- 
                                
                        
                         - News
 -  Books
                        
Featured Books
- smt007 Magazine
 Latest Issues
Current Issue
                                                                                                        Spotlight on Mexico
Mexico isn’t just part of the electronics manufacturing conversation—it’s leading it. From growing investments to cross-border collaborations, Mexico is fast becoming the center of electronics in North America. This issue includes bilingual content, with all feature articles available in both English and Spanish.
                                                                                                        Production Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
                                                                                                        Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
- Articles
 - Columns
 - Links
 - Media kit
 ||| MENU - smt007 Magazine
 
Cavity Board SMT Assembly Challenges (Part 2)
July 3, 2019 | Dudi Amir and Brett Grossman, Intel CorporationEstimated reading time: 17 minutes
Figure 24: Cavity KOZ.
This formula is based on experiments with 200-μm cavity depth and can be used as a good starting point for cavity design. It may need additional experiments and adjustments for deeper cavities. For the KOZ outside the cavity (Co), as mentioned in the experiment results, the smearing was the only issue. To minimize the smearing, a KOZ of 0.5 mm and an additional 0.5 mm for HVM variation would be recommended. Note that if a welded technology is used for the stencil, a welding KOZ is also necessary, which will add 1.5mm.
Squeegee Experiment
The impact of the squeegee slit length (Figure 15), blade thickness, and the use of a soft polyurethane squeegee were evaluated. Nine boards—three from each PCB supplier—were printed with paste. The paste volume was measured in the SPI machine. Electroformed Stencil 2 was used with this study. Five different squeegee types were evaluated. Table 5 lists the experiment’s legs.
Table 5: Print study.
The chart in Figure 25 provides the experiment results of the different squeegees. Leg 1 with a 10-mm slit and a 0.2-mm blade showed the best print volume CV.
Figure 25: Squeegee-type print CV study.
Using a polyurethane squeegee with no slit (Leg 5) showed high solder print CV for the BGA outside of the cavity as well as the one inside the cavity. The chart in Figure 26 consists of the different squeegee blade legs and solder volume measured at U1 inside the cavity and U2 on the surface outside the cavity. The solder paste volume at Leg 5—the polyurethane squeegee—had some low paste points and had difficulty in printing the two levels at the same time without causing solder scooping and insufficient solder volume.
Figure 26: Squeegee-type print CV study.
Component Assembly in the Cavity
The assembly yield of a BGA SiP into a cavity was compared to a control BGA SiP outside the cavity, which was placed just 6 mm away from each other (Figure 27). BGA U1 was placed in the cavity while BGA U2 was outside of the cavity.
Figure 27: Assembled board.
The data was collected from multiple builds with Stencil 2 using a 0.2-mm slit squeegee blade and a 10-mm slit. After assembly, the boards were examined by X-ray for opens and shorts. Selected units went through failure analysis for cross-sections. To add HVM variability multiple board supplier were used. The results are summarized in Table 6.
Table 6: SMT assembly yield.
Failure Analysis
There were two surprises: the first one was that all defects came from one PCB supplier regardless of build time and shift although the same process was used at SMT to mount all boards. The second surprise was that the defects were open due to head-on-pillow (HoP) with a signature indicating excessive warpage. The SiP BGA that was selected had a stiffener to control its warpage during reflow to a minimum. The initial risk for the defect was presumed to be bridging due to the excessive paste and large paste volume variation at the edges and corner of the cavity lands. Figure 28 shows stretched joints at the package corners with classic HoP defects, which has been shown in many industry papers [3] as an indication of high warpage of the package. However, this was not the case in this experiment.
Figure 28: BGA head-on-pillow defect.
This defect, shown in Figure 28, is a result of localized warpage of the board in the cavity area, and not the BGA package. It was known that local warpage is a contributor to open HiP defects in SMT [4 & 5],but it has not previously been shown as being the only cause for this defect.
Page 3 of 4
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
BTU International Earns 2025 Step-by-Step Excellence Award for Its Aqua Scrub™ Flux Management System
10/29/2025 | BTU International, Inc.BTU International, Inc., a leading supplier of advanced thermal processing equipment for the electronics manufacturing market, has been recognized with a 2025 Step-by-Step Excellence Award (SbSEA) for its Aqua Scrub™ Flux Management Technology, featured on the company’s Pyramax™ and Aurora™ reflow ovens.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.