-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueShowing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
All About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
NUS Innovation Boosts Wireless Connectivity 1,000 Times
July 17, 2019 | NUSEstimated reading time: 4 minutes

Over the past decade, a major trend in electronics has been the development of sensors, displays and smart devices which are seamlessly integrated onto the human body. Most of these wearable devices are singularly connected to a user’s smart phone and transmit all data via bluetooth or wi-fi signals. But as consumers wear increasing numbers of wearable devices, and as the data they transmit increases in sophistication, more innovative connection methods are being sought after.
Now, NUS researchers have invented a completely new way for wearable devices to interconnect. They incorporated conductive textiles into clothing to dynamically connect several wearable devices at once. This ‘wireless body sensor network’ allows devices to transmit data with 1,000 times stronger signal than conventional technologies, meaning the battery life of all devices is dramatically improved. Wireless networks of these wearable devices on a body have future applications in health monitoring, medical interventions and human–machine interfaces.
This technological breakthrough, which took the 10-member team a year to achieve, was published as the cover of Nature Electronics on 17 June 2019.
Better Data Transmission, Greater Privacy
Currently, almost all body sensors like smart watches connect to smartphones and other wearable electronics via radio-waves like Bluetooth and Wi-Fi. These waves radiate outwards in all directions, meaning that most of the energy is lost to the surrounding area. This method of connectivity drastically reduces the efficiency of the wearable technology as most of its battery life is consumed in attempting the connection.
As such, Assistant Professor John Ho and his team from the Institute for Health Innovation & Technology (NUS iHealthtech) and NUS Engineering wanted to confine the signals between the sensors closer to the body to improve efficiency.
Their solution was to enhance regular clothing with conductive textiles known as metamaterials. Rather than sending waves into surrounding space, these metamaterials are able to create ‘surface waves’ which can glide wirelessly around the body on the clothes. This means that the energy of the signal between devices is held close to the body rather than spread in all directions. Hence, the wearable electronics use much less power than normal, and the devices can detect much weaker signals.
“This innovation allows for the perfect transmission of data between devices at power levels that are 1,000 times reduced. Or, alternatively, these metamaterial textiles could boost the received signal by 1,000 times which could give you dramatically higher data rates for the same power,” Asst Prof Ho stated. In fact, the signal between devices is so strong that it is possible to wirelessly transmit power from a smartphone to the device itself — opening the door for battery-free wearable devices.
Crucially, this signal boost does not require any changes to either the smartphone or the Bluetooth device — the metamaterial works with any existing wireless device in the designed frequency band.
This inventive way of networking devices also provides more privacy than conventional methods. Currently, radio-waves transmit signals several metres outwards from the person wearing the device, meaning that personal and sensitive information could be vulnerable to potential eavesdroppers. By confining the wireless communication signal to within 10 centimetres of the body, Asst Prof Ho and his team have created a network which is more secure.
Page 1 of 2
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Brent Laufenberg Appointed CIO of the Global Electronics Association, Advancing Technology and Member Services
07/31/2025 | Global Electronics AssociationThe Global Electronics Association (formerly IPC International Inc.) announces the appointment of Brent Laufenberg as its new Chief Information Officer (CIO).
SES AI Accelerates Timeline for Revenue Growth and Profitability with Acquisition of UZ Energy
07/31/2025 | BUSINESS WIRESES AI Corporation, a global leader in the development and manufacturing of AI-enhanced high-performance Li-Metal and Li-ion batteries, today announced it has executed a definitive agreement to acquire 100% of UZ Energy, an energy storage systems (“ESS”) provider, for a purchase price of approximately $25.5 million, subject to earnout adjustment based on the achievement of specified financial targets.
Teramount Raises $50M to Address Growing Demand for AI Infrastructure Optical Connectivity
07/31/2025 | PRNewswireTeramount, the leader in scalable fiber-to-chip interconnect solutions for AI, data centers and advanced computing, today announced it has raised $50 million in financing led by new investor Koch Disruptive Technologies (KDT). Existing investors Grove Ventures and several new strategic investors, including AMD Ventures, Hitachi Ventures, Samsung Catalyst Fund and Wistron, joined the round.
Hon Hai Technology Group (Foxconn) and TECO Announce Strategic Alliance Targeting AI Data Center Capabilities
07/31/2025 | Hon Hai Technology GroupHon Hai Technology Group (“Foxconn”) and TECO Electric & Machinery Co Ltd (“TECO”) on Wednesday announced a share exchange, strategic alliance that will strengthen their AI infrastructure capabilities and propel the two Taiwanese tech majors into key markets in the global super-computing race.
Leveraging Chemical Data More Efficiently
07/29/2025 | Lynn L. Bergeson, Bergeson & CampbellSome truths transcend politics, one being that chemical data holds enduring value and is becoming increasingly essential. In the United States, regardless of which party federally controls the levers of power, it’s clear that chemical manufacturers and their customers must develop and curate robust data portfolios for their chemical inventories. The commercial imperatives driving this are undeniable and gaining traction.