-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueDesigning Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Mentor Tools: Optimized for Flex and Rigid-flex Design
August 1, 2019 | Andy Shaughnessy, Design007 MagazineEstimated reading time: 2 minutes

With the launch of the new Flex007 section in Design007 Magazine, we asked David Wiens, product marketing manager with Mentor, a Siemens Business, to tell us about their tools’ flex and rigid-flex design capabilities. As David explains, today’s higher-end design software tools are optimized for flex design, making workarounds a thing of the past.
Andy Shaughnessy: What are your customers’ biggest challenges in designing rigid-flex?
David Wiens: Engineering teams have designed advanced rigid-flex products for years using a series of workarounds to their EDA tools, often verifying with paper dolls. Rigid-flex designs require advanced stackup constructs (e.g., multiple outlines, each with its own stackup, and new materials). There are also additional rules that need to be applied, including bend/fold control with collision clearances, curve routing with arcs and teardrops, hatched plane fill shapes, component placement limits in flex areas, and fabrication rules around board stiffeners and coverlays. The workarounds naturally take longer to implement and often result in errors because the design must be checked manually. This can lead to a non-optimized product because once something is designed, nobody wants to go back and make ECOs. Some errors, such as copper micro-cracks, create long-term product reliability issues. Manufacturing is also a challenge. Design teams must align with their manufacturer to understand the costs of different rigid-flex structures—costs can go up quickly—and optimize the hand-off from design to manufacturing.
Shaughnessy: Tell us about the rigid-flex design capabilities in the latest versions of Mentor’s tools.
Wiens: Our solution supports flex, rigid, or rigid-flex with a common set of functionality. Native support for flex/rigid-flex extends across the flow, from initial stackup definition through design validation and manufacturing outputs, eliminating time-consuming workarounds.
It starts with an independent stackup for each rigid or flex element; these can easily be modified or overlapped. This approach limits the board outline and stackup modifications necessary when the shape of the board changes. With flex stackups, there are additional materials and layer types to model, such as cover layers, stiffeners, and adhesives. These materials are intelligent and are understood at design verification as well as the hand-off to manufacturing. Control of where bends occur is critical, so a bend area object defines the location, radius, angle, and origin. Attributes also define placement, routing (e.g., via utilization, trace corners, trace width changes, etc.) and plane metal (e.g., hatch/cross-hatch) rules in the area.
For place and route, each rigid-flex area has its own external/internal layers, so parts can be placed on any external layer (including flex regions and/or in cavities) with appropriate pads and openings automatically handled. During routing, true arcs are utilized to minimize stress fractures in flex regions, and they adhere to the constraint-driven, correct-by-design methodology for which we’re known. Curved teardrops are automatically generated and maintained dynamically. Due to the automation throughout layout, design changes are easy and safe.
To read this entire interview, which appeared in the July 2019 issue of Design007 Magazine, click here.
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.