-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueSignal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
Showing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Mentor Tools: Optimized for Flex and Rigid-flex Design
August 1, 2019 | Andy Shaughnessy, Design007 MagazineEstimated reading time: 2 minutes

With the launch of the new Flex007 section in Design007 Magazine, we asked David Wiens, product marketing manager with Mentor, a Siemens Business, to tell us about their tools’ flex and rigid-flex design capabilities. As David explains, today’s higher-end design software tools are optimized for flex design, making workarounds a thing of the past.
Andy Shaughnessy: What are your customers’ biggest challenges in designing rigid-flex?
David Wiens: Engineering teams have designed advanced rigid-flex products for years using a series of workarounds to their EDA tools, often verifying with paper dolls. Rigid-flex designs require advanced stackup constructs (e.g., multiple outlines, each with its own stackup, and new materials). There are also additional rules that need to be applied, including bend/fold control with collision clearances, curve routing with arcs and teardrops, hatched plane fill shapes, component placement limits in flex areas, and fabrication rules around board stiffeners and coverlays. The workarounds naturally take longer to implement and often result in errors because the design must be checked manually. This can lead to a non-optimized product because once something is designed, nobody wants to go back and make ECOs. Some errors, such as copper micro-cracks, create long-term product reliability issues. Manufacturing is also a challenge. Design teams must align with their manufacturer to understand the costs of different rigid-flex structures—costs can go up quickly—and optimize the hand-off from design to manufacturing.
Shaughnessy: Tell us about the rigid-flex design capabilities in the latest versions of Mentor’s tools.
Wiens: Our solution supports flex, rigid, or rigid-flex with a common set of functionality. Native support for flex/rigid-flex extends across the flow, from initial stackup definition through design validation and manufacturing outputs, eliminating time-consuming workarounds.
It starts with an independent stackup for each rigid or flex element; these can easily be modified or overlapped. This approach limits the board outline and stackup modifications necessary when the shape of the board changes. With flex stackups, there are additional materials and layer types to model, such as cover layers, stiffeners, and adhesives. These materials are intelligent and are understood at design verification as well as the hand-off to manufacturing. Control of where bends occur is critical, so a bend area object defines the location, radius, angle, and origin. Attributes also define placement, routing (e.g., via utilization, trace corners, trace width changes, etc.) and plane metal (e.g., hatch/cross-hatch) rules in the area.
For place and route, each rigid-flex area has its own external/internal layers, so parts can be placed on any external layer (including flex regions and/or in cavities) with appropriate pads and openings automatically handled. During routing, true arcs are utilized to minimize stress fractures in flex regions, and they adhere to the constraint-driven, correct-by-design methodology for which we’re known. Curved teardrops are automatically generated and maintained dynamically. Due to the automation throughout layout, design changes are easy and safe.
To read this entire interview, which appeared in the July 2019 issue of Design007 Magazine, click here.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.