-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Avoiding EMI Problems With Lee Ritchey
February 27, 2020 | I-Connect007 Editorial TeamEstimated reading time: 2 minutes
The I-Connect007 team met with design expert Lee Ritchey to pick his brain on EMI (electromagnetic interference) problems and what can be done to minimize them. Lee explains the issues are almost always tied to power delivery, as well as the abundant amount of misinformation surrounding this topic.
Barry Matties: Thank you for speaking with us, Lee.
Andy Shaughnessy: We want to discuss finer pitches and features and EMI and EMC because we have talked to people having EMI issues, particularly in Germany on the automotive side. You mentioned that you weren’t seeing many EMI problems due to different ways of doing busses and other tricks that helped relieve those issues.
Lee Ritchey: I believe that might have been happening because they have big distributed networks in cars, and if you don’t do it right, you turn the whole car into an antenna. To Andy’s point, I used to do six to 12 EMI problems a year, but I did only one last year. The source of most EMI is a ripple in the power supply, which is caused by trying to drive these wide data busses for DDR, VME, etc., and the power supply hasn’t been designed correctly. When we replace a parallel bus with a differential pair, several things happen all at once. The incidence of wide busses switching from zero to one goes away, and that’s the villain in almost all cases.
Most of what I work on has nothing but differential pairs in it. Big networking products that you would think would be a problem are flying because of inherently quiet differential signaling. To give you an example, everyone has differential twisted pairs in your house. The energy on it is an EMI band, but we don’t have any issues, even with unshielded wires. The reason is that the fields cancel each other on the two wires. That does not happen when you have a single-ended circuit.
People having problems have something in their product, such as a parallel bus, with the power delivery system designed incorrectly. That used to be how we made easy money. I’d get a call and say, “Did you follow the app notes?” If the answer was, “Yes,” then I knew what their problem was. However, being a good consultant, I won’t tell you over the phone because then you think it’s free advice. You fly me out at great expense, we fix it, and you’re happy. It’s hard to get this concept through, but if you follow the app notes, you will likely have an EMI problem. If your problems are typical applications, then you will always have an EMI problem. Almost all of them say to use 0.1-uf and 0.01-uF capacitors in all sorts of different ways. Neither of those capacitors is able to deal with EMI. That’s my giveaway. I know what to fix. You don’t have the right capacitors in your power system.
To read this entire interview, which appeared in the February 2020 issue of Design007 Magazine, click here.
Suggested Items
Würth Elektronik Offers its Radio Module for LoRaWAN Communication
11/19/2024 | Wurth ElektronikWürth Elektronik launches Daphnis-I on the market – a slim, ultra-low power consumption and long range radio module for IoT applications.
RTX's Raytheon Awarded U.S. Army Contract for Wireless Power Beaming Technology
11/18/2024 | Raytheon TechnologiesRaytheon, an RTX, has been awarded a contract from the U.S. Army to work on directed energy wireless power beaming capabilities that will distribute power across the battlefield, simplify logistics, and safeguard locations for U.S. troops.
Boeing Delivers Advanced O3b mPOWER Satellites to Operator SES
11/14/2024 | BoeingBoeing teams have successfully delivered the 7th and 8th O3b mPOWER satellites to SES. These satellites, featuring Boeing’s advanced software-defined communications payload, are being transported to Cape Canaveral for a planned launch in December.
Renesas Jointly Developed World-Class '8-in-1' Proof of Concept with Nidec
11/12/2024 | RenesasRenesas Electronics Corporation, a premier supplier of advanced semiconductor solutions, today announced the world's first “8-in-1” proof of concept* (PoC) for E-Axle systems for electric vehicles (EV), which controls eight functions using a single microcontroller (MCU).
Aismalibar to Showcase Advanced Thermal Management Solutions for Electronics at electronica 2024
11/11/2024 | AismalibarAismalibar, a leading innovator in thermal management solutions, will exhibit at electronica 2024, the world’s foremost trade fair and conference for the electronics industry, held in Munich from November 12-15, 2024. Located at Booth B1.543, Aismalibar will highlight its latest advancements in Thermal Interface Materials (TIMs), Insulated Metal Substrates (IMS), and Thermal FR4 solutions tailored to meet the increasing demands for efficient heat dissipation and durability across various high-power applications.