-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current Issue
Power Integrity
Current power demands are increasing, especially with AI, 5G, and EV chips. This month, our experts share “watt’s up” with power integrity, from planning and layout through measurement and manufacturing.
Signal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
3D Additive Electronics Manufacturing: Are We Nearing an Inflection Point?
May 28, 2020 | Dan Feinberg, I-Connect007Estimated reading time: 7 minutes
I have been following the advances in 3D additive circuit manufacturing for the past six years, from post-conception to fast-turn prototype production, and from simple printing of conductors on a dielectric to being able to make a loaded circuit board complete with printed resistors and capacitors. In terms of volume, we have gone from very low volume prototypes to moderate volume production circuits. It seems that the rate of progress has accelerated significantly.
We are progressing from the production of a standard circuit board using only 3D printing to printing both the circuit and some components directly onto a base unit. For example, a circuit assembly designed to measure and report temperature can be printed directly onto the component or cylinder that generates the heat. Antennas can be printed directly into a helmet or onto a transmitting/receiving device, and connectors can be printed instead of mounted and connected.
Today, fully functional PCBs with integrated circuit components and other embedded semiconductor devices can be created with 3D printers. The more advanced 3D printing equipment and consumables can produce resolution near micron-level. More than one type of material can be deposited at the same time, which allows for 3D printing of integrated circuits because the co-deposition of conductors and semiconducting materials must be done at the same time. Applications, such as semiconductor chip fabrication, require the integration of different materials simultaneously.
3D additive manufacturing of electronic devices may be at the point, both technically and commercially, where standard circuit board manufacturing was in the ‘50s and ‘60s. That’s when we began the transition from chassis-mounted, hard-wired vacuum tube sockets and point-to-point hand-soldered components to circuit boards with discrete transistors and passive components.
3D-Printed Electronics Webinar
Recently, I was invited to attend a detailed and broadly informative webinar “The Strength of 3D-Printed Electronics” by nScrypt, which covered the status and advances in the use of 3D printing for electronic device design and manufacture.
nScrypt is an Orlando-based company founded in 2002 that focuses on 3D printing. Here’s what I learned about the company: “nScrypt provides tools and processes for next-generation electronic products. Their Factory in a Tool (FiT) has the ability to make complete products on a single platform by using multi-material and multi-processes using precision motion and control. Existing nScrypt machines are made for the existing factory floor where precision processes matter in high volume or stand-alone for personalized products manufactured using digital files. nScrypt tools are made to run 24/7/365 manufacturing products, even when you sleep.”
This webinar focused on the current and future uses of 3D additive manufacturing. I found the speakers to be very informative as they discussed their experience with a broad range of 3D additive manufacturing capabilities, and what they expect as they plan ahead. Here’s what I learned from each of the speakers.
James Zunino
James Zunino is co-founder of the U.S. Army’s additive manufacturing community of practice and a materials engineer at the Combat Capabilities Development Command Armaments Center (CCDCAC) in New Jersey.
He talked about transformative manufacturing techniques for novel printed armament technologies in the areas of additive manufacturing, 3D printing of polymers and metals for flex hybrid electronics, smart manufacturing, automation, robotics, and digital manufacturing. These advanced manufacturing capabilities, James said, are now being used at 18 sites in the United States. Some of the current system efforts include munition power sources, ammunition and warheads, instrumentation for training and simulation, armaments and munitions, remote weapons, and special operations.
My overall impressions are that 3D processes are being used by the military to significantly improve the capability of weapons and provide power solutions with the goal to print as much as possible.
Dr. Kenneth Church
Dr. Kenneth Church is the CEO of nScrypt and detailed current and future efforts in printing electronics. Take the evolution of the smartphone as an example, he said.
The latest phones are full of “stuff,” such as glue and solder—much of which can be eliminated with additive manufacturing that uses printed adhesives, solder, printed antennas, and components. Ken demonstrated with a four-element-phased array antenna complete with an RF structure—a relatively complicated 3D-printed device.
He also mentioned that, as a partner with NASA, they now have a 3D-printing device used on the International Space Station.Page 1 of 2
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
Learning With Leo: UHDI—The Next Leap in PCB Manufacturing
11/05/2025 | Leo Lambert -- Column: Learning With LeoHigh density interconnect (HDI) technology has been a cornerstone of miniaturized electronics since Hewlett-Packard introduced the first chip-scale implementation in 1982. Over time, HDI processes became central to organic flip-chip packaging in the semiconductor industry. Today, the convergence of IC substrates and system-level PCBs has accelerated the adoption of UHDI.
BTU International Earns 2025 Step-by-Step Excellence Award for Its Aqua Scrub™ Flux Management System
10/29/2025 | BTU International, Inc.BTU International, Inc., a leading supplier of advanced thermal processing equipment for the electronics manufacturing market, has been recognized with a 2025 Step-by-Step Excellence Award (SbSEA) for its Aqua Scrub™ Flux Management Technology, featured on the company’s Pyramax™ and Aurora™ reflow ovens.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.