-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current Issue
Power Integrity
Current power demands are increasing, especially with AI, 5G, and EV chips. This month, our experts share “watt’s up” with power integrity, from planning and layout through measurement and manufacturing.
Signal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Just Ask Happy: Calculating Trace Temps in a Vacuum
July 7, 2020 | I-Connect007 Editorial TeamEstimated reading time: 1 minute
We asked for you to send in your questions for Happy Holden, and you took us up on it! The questions you've posed run the gamut, covering technology, the worldwide fab market, and everything in between. Enjoy.
Q: For space applications (without air), how should we calculate external layer current-carrying traces against the IPC-2221 (formerly IPC-D-275) charts?
A: I have never studied that, so I turned this question over to an expert, my friend Mike Jouppi, former committee chair of IPC-2152 Standard for Determining Current Carrying Capacity in Printed Board Design. This standard will provide many answers to your questions. Mike wrote Chapters 22 and 23 in the seventh edition of the Printed Circuits Handbook, edited by Clyde F. Coombs and me.
Mike answered: I'm a mechanical engineer who worked as a career thermal analyst. The charts in IPC-2152 in almost all cases will be conservative (both air and vacuum environments). The vacuum is for space environments. The purpose behind these charts is misconstrued by most users. My intention when they were developed was to use these charts as a baseline for developing thermal models that could be used to better understand the actual temperature rise of conductors in actual designs, which I did for my own design purposes. The concept did not catch on.
There is a significant difference between the temperature rise in a conductor, tested per IPC-TM-2.5.4.1a, and most PWB design configurations. The reason is that most designs have copper ground and power planes that conduct energy away from the traces. In addition, most designs in space applications have a significant conduction path from the PWB through-bolted fasteners or wedge locks to a sink.
Since the question does not include IPC-2152, I would recommend researching IPC-2152 and accounting for the power dissipations in the traces in the thermal design. I also recommend accounting for the conductor power dissipation in all designs, especially if the designers are not familiar with sizing parallel conductors. Parallel conductors are easily managed with accounting for conductor losses (power dissipation). FYI: It was the power dissipation in conductors that motivated me to lead the development of IPC-2152.
To pose your own question for Happy Holden, take the survey by clicking here.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Trouble in Your Tank: Understanding Interconnect Defects, Part 1
11/04/2025 | Michael Carano -- Column: Trouble in Your TankThis month, I’ll address interconnect defects (ICDs). While this defect continues to rear its ugly head, don’t despair. There are solutions, most of which center on process control and understanding the relationship of the chemistry, materials, and equipment. First, though, let’s discuss ICDs.
Target Condition: Distribution of Power—Denounce the Ounce
11/05/2025 | Kelly Dack -- Column: Target ConditionHave you ever wondered why the PCB design segment uses ounces to describe copper thickness? There’s a story behind all of this—a story that’s old, dusty, and more than a little absurd. (Note that I didn’t add “Like many of us.”) Legend has it that back in the days of copper tinkers and roofing tradesmen, the standard was set when a craftsman hammered out a sheet of copper until it weighed one ounce, when its area conveniently matched the square of the king’s foot.
WestDev Announces Advanced Thermal Analysis Integration for Pulsonix PCB Design Suite
10/29/2025 | WestDev Ltd.Pulsonix, the industry-leading PCB design software from WestDev Ltd., announced a major enhancement to its design ecosystem: a direct interface between Pulsonix and ADAM Research's TRM (Thermal Risk Management) analysis software.
Designers Notebook: Power and Ground Distribution Basics
10/29/2025 | Vern Solberg -- Column: Designer's NotebookThe principal objectives to be established during the planning stage are to define the interrelationship between all component elements and confirm that there is sufficient surface area for placement, the space needed to ensure efficient circuit interconnect, and to accommodate adequate power and ground distribution.
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.