-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Just Ask Joe: Standardized Grid Designs
August 26, 2020 | I-Connect007 Research TeamEstimated reading time: 2 minutes
First, we asked you to send in your questions for Happy Holden. Now, it’s Joe Fjelstad’s turn! Inventor, columnist, instructor, and founder of Verdant Electronics, Joe has been involved with rigid PCBs and flexible circuits for decades, and he’s ready to share some of his knowledge with our readers. We hope you enjoy “Just Ask Joe.”
Q: Will standardized grid designs ever come to fruition?
A: I am old enough to know that once upon a time, the electronics industry actually had a standardized grid. It was 0.100”. It was the natural by-product of the fact that most early electronic packages were dual in-line packages (DIPs), and nearly all of the first DIPs had their leads on 100-mil pitch (the Soviets and Eastern Bloc nations went with 2.5 mm rather than 2.54 mm or 0.1 inches). It was a natural default, and 100-mil grid pitch design was common and the standard even today; think of hobbyist’s bread boards, which are on a 100-mil grid.
Those halcyon days were disrupted as pin counts rose, and surface-mount technology took the stage to help manage the explosion in package pin counts. Then there was the “80% rule” for package leads that took effect to provide a defined roadmap for following generation component lead pitch. Thus, today (ignoring inch-based devices), we have 2.5 mm, 2.0 mm, 1.5 mm, 1.25 mm, 1.0 mm, 0.8 mm, 0.65 mm, 0.5 mm, 0.4 mm, etc.
Area array technology offered the opportunity to return to a standard grid, but the 80% rule was applied instead, which is a great pity from my perspective. Instead, what might have been done is to agree on a common base grid pitch and depopulate to the pin count desired. Everything gets easier again—no more burning off layers of circuits to accommodate escapes and differing grid pitch components. It is an easy way to return to standardized grids. All that is necessary is for component packagers to offer every component with terminations on a standard grid. My suggestion is 0.5 mm because that is where component soldering yields start to fall off.
Is it possible to return to the standard grid? Absolutely. It is more a question of customer demand for such and package foundries’ willingness to do so. It could save billions of dollars annually, according to my back-of-the-napkin calculations.
To pose your own question for Joe Fjelstad, click here.
Joe Fjelstad is founder and CEO of Verdant Electronics and an international authority and innovator in the field of electronic interconnection and packaging technologies with more than 185 patents issued or pending. To read past "Flexible Thinking" columns or contact Fjelstad, click here. Download your free copy of Fjelstad’s book Flexible Circuit Technology, 4th Edition, and watch the micro webinar series on flexible circuit technology.
Suggested Items
Subdued Electronics Industry Sentiment Continues in November
11/25/2024 | IPCIPC releases November 2024 Global Sentiment of the Electronics Manufacturing Supply Chain report
NEOTech Significantly Improves Wire Bond Pull Test Process
11/25/2024 | NEOTechNEOTech, a leading provider of electronic manufacturing services (EMS), design engineering, and supply chain solutions in the high-tech industrial, medical device, and aerospace/defense markets, proudly announces a major advancement in its wire bond pull testing process, reducing manufacturing cycle time by more than 60% while maintaining industry-leading production yields of over 99.99%.
PCB Design Software Market Expected to Hit $9.2B by 2031
11/21/2024 | openPRThis report provides an overview of the PCB design software market, detailing key market drivers, challenges, technological advancements, regional dynamics, and future trends. With a projected compound annual growth rate (CAGR) of 13.4% from 2024 to 2031, the market is expected to grow from USD 3.9 billion in 2024 to USD 9.2 billion by 2031.
IPC Issues Clarion Call for EU to Reclaim Leadership in Electronics Manufacturing
11/21/2024 | IPCIPC released a synopsis of its recent white paper, Securing the European Union’s Electronics Ecosystem. This condensed document presents a comprehensive overview of the current challenges in Europe’s electronics manufacturing industry and shares actionable steps to help the EU achieve a stronger, more autonomous ecosystem.
IPC Celebrates National Apprenticeship Week with a Focus on Electronics Manufacturing Excellence
11/19/2024 | IPCIPC, a leading global electronics industry association and source for industry standards, training and advocacy, is proud to announce its participation in National Apprenticeship Week, scheduled for November 17-23, 2024.