-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAll About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Just Ask Tara Dunn: What Is the Thickest Flex Layer Available?
November 13, 2020 | I-Connect007 Editorial TeamEstimated reading time: 1 minute

First, we asked you to send in your questions for Happy Holden, Joe Fjelstad, John Mitchell, and others in our “Just Ask” series. Now, it’s Tara Dunn’s turn! Tara is the vice president of marketing and business development for Averatek. A regular Flex007 columnist, Tara discusses flexible circuits, rigid-flex, and rigid PCBs, as well as RF/microwave technology, microelectronics, and additive processes. She is also co-founder of Geek-a-Palooza and a show manager for the SMTA Additive Electronics TechXchange event. She has over 20 years of experience in the PCB industry. We hope you enjoy “Just Ask Tara.”
Q: What is the maximum thickness of a single flex layer, not just for a test vehicle but a flexible circuit layer manufactured commercially?
A: There are a lot of different ways to answer this question. There are examples of flexible circuits being manufactured with 10-ounce copper bonded to dielectric. In this case, the “body” of the flexible circuit is typically etched to a thinner copper for flexibility and leaves the contact fingers with the thicker copper.
Looking at what laminate thickness are commercially available for fabricators, Dupont provides a laminate with 0.005” dielectric, bonded on each side to four-ounce copper, with 0.003” adhesive. That is an extremely thick laminate, at 0.0222”. The most common flexible laminates are much thinner, with half-ounce or one-ounce copper bonded to 0.001” or 0.002” polyimide, resulting in thicknesses of 0.0024–0.0068”, depending on adhesive requirements, dielectric thicknesses, and copper weight.
To submit your questions for Tara, click here.
Suggested Items
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.