-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueDesigning Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Book Excerpt: Thermal Management With Insulated Metal Substrates, Part 4
December 10, 2020 | Didier Mauve and Ian Mayoh, VentecEstimated reading time: 2 minutes

The following is an excerpt from Chapter 4 of "The Printed Circuit Designer's Guide to... Thermal Management With Insulated Metal Substrates," written by Ventec International Group’s Didier Mauve and Ian Mayoh. In this free eBook, the authors provide PCB designers with the essential information required to understand the thermal, electrical, and mechanical characteristics of insulated metal substrate laminates.
Chapter 4: Application Examples
Main Application Areas
Insulated metal substrates find many applications in automotive and industrial LED, power conversion, general lighting, street safety, backlight unit, and e-vehicle sectors (Figure 4.1).
Figure 4.1: Primary applications for IMS.
Headlamps
Compact LED lamp units give car stylists extra freedom. Bright lighting at near-daylight color temperatures gives drivers a clear view. However, as much as 80% of the electrical power supplied is dissipated as heat, which presents engineers with severe thermal management challenges.
Matrix headlamps feature multiple closely-spaced emitters on a single substrate. A substrate of high thermal conductivity, featuring either an aluminum or copper baseplate, and dielectric thickness of about 0.002” (0.05 mm) is a typical choice to ensure long-term reliability. A non-reinforced dielectric minimizes stressors due to CTE mismatch between the copper foil and aluminum baseplate. A copper baseplate may be used if the matrix density is extremely high and the power is very high to address potential CTE mismatches. Spotlights with multiple boards, each containing two or three emitters, concentrate the thermal challenge on smaller substrates featuring an aluminum baseplate and 2–3 W/mK overall thermal conductivity including the dielectric layer, which is typically about 0.003–0.004” (0.075–0.010 mm).
Automotive Turn Signals
LEDs for turn signals are typically in the 3W power range. A three-emitter unit dissipates about 7 watts of thermal energy that must be extracted from the component. IMS is often the most efficient and cost-effective thermal connection to the metallic chassis. Extreme size and shape constraints can direct designers toward a substrate with 3 W/ mK thermal conductivity and 0.002” or 0.003” (0.05–0.075 mm) dielectric.
High-Power Motor Drive for Electric Power Steering
Electric power steering (EPS) and other motor-driven mechanisms, including high-power electric-traction inverters in EVs, can present even tougher thermal management challenges. Targets for module size and reliability can be met cost-effectively using a high-performing IMS with thermal conductivity of 3–4.2 W/mK and 0.004”–0.006” (0.10–0.15 mm) dielectric. Direct bonded copper (DBC) is an alternative. In extremely high-power applications, such as inverters, power transistors may be soldered to the IMS/DBC circuit layer as bare die, and a liquid-cooled heat sink attached to the baseplate. In some modules, such as combined onboard charger (OBC) and DC/DC-converter units for EVs, the baseplate is integrated with a cast metal chassis, and the specification determined in consultation with the foundry.
To download this free eBook, published by I-Connect007, click here.
To view the entire I-Connect007 eBook library, click here.
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.