-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAll About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Book Excerpt: Thermal Management With Insulated Metal Substrates, Part 4
December 10, 2020 | Didier Mauve and Ian Mayoh, VentecEstimated reading time: 2 minutes

The following is an excerpt from Chapter 4 of "The Printed Circuit Designer's Guide to... Thermal Management With Insulated Metal Substrates," written by Ventec International Group’s Didier Mauve and Ian Mayoh. In this free eBook, the authors provide PCB designers with the essential information required to understand the thermal, electrical, and mechanical characteristics of insulated metal substrate laminates.
Chapter 4: Application Examples
Main Application Areas
Insulated metal substrates find many applications in automotive and industrial LED, power conversion, general lighting, street safety, backlight unit, and e-vehicle sectors (Figure 4.1).
Figure 4.1: Primary applications for IMS.
Headlamps
Compact LED lamp units give car stylists extra freedom. Bright lighting at near-daylight color temperatures gives drivers a clear view. However, as much as 80% of the electrical power supplied is dissipated as heat, which presents engineers with severe thermal management challenges.
Matrix headlamps feature multiple closely-spaced emitters on a single substrate. A substrate of high thermal conductivity, featuring either an aluminum or copper baseplate, and dielectric thickness of about 0.002” (0.05 mm) is a typical choice to ensure long-term reliability. A non-reinforced dielectric minimizes stressors due to CTE mismatch between the copper foil and aluminum baseplate. A copper baseplate may be used if the matrix density is extremely high and the power is very high to address potential CTE mismatches. Spotlights with multiple boards, each containing two or three emitters, concentrate the thermal challenge on smaller substrates featuring an aluminum baseplate and 2–3 W/mK overall thermal conductivity including the dielectric layer, which is typically about 0.003–0.004” (0.075–0.010 mm).
Automotive Turn Signals
LEDs for turn signals are typically in the 3W power range. A three-emitter unit dissipates about 7 watts of thermal energy that must be extracted from the component. IMS is often the most efficient and cost-effective thermal connection to the metallic chassis. Extreme size and shape constraints can direct designers toward a substrate with 3 W/ mK thermal conductivity and 0.002” or 0.003” (0.05–0.075 mm) dielectric.
High-Power Motor Drive for Electric Power Steering
Electric power steering (EPS) and other motor-driven mechanisms, including high-power electric-traction inverters in EVs, can present even tougher thermal management challenges. Targets for module size and reliability can be met cost-effectively using a high-performing IMS with thermal conductivity of 3–4.2 W/mK and 0.004”–0.006” (0.10–0.15 mm) dielectric. Direct bonded copper (DBC) is an alternative. In extremely high-power applications, such as inverters, power transistors may be soldered to the IMS/DBC circuit layer as bare die, and a liquid-cooled heat sink attached to the baseplate. In some modules, such as combined onboard charger (OBC) and DC/DC-converter units for EVs, the baseplate is integrated with a cast metal chassis, and the specification determined in consultation with the foundry.
To download this free eBook, published by I-Connect007, click here.
To view the entire I-Connect007 eBook library, click here.
Suggested Items
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.