-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Book Excerpt: The Printed Circuit Assembler’s Guide to Smart Data
December 16, 2020 | Sagi Reuven and Zac Elliott, Siemens Digital Industries SoftwareEstimated reading time: 3 minutes

Introduction
Whenever we discuss data, keep in mind that people have been collecting data, verifying it, and translating it into reports for a long time. And if data is collected and processes are changed automatically, people still will be interpreting and verifying the accuracy of the data, creating reports, making recommendations, solving problems, tweaking, improving, and innovating. Whatever data collection system is used, any effort to digitalize needs to engage and empower the production team at the factory. Their role is to attend to the manufacturing process but also to act as the front line of communications and control. When operations are not performing as expected, they need to be able to:
- Act as the first line of issue containment so that they can minimize the effect of the problem on the final product or process through problem-solving and corrective actions in real-time.
- Act as intelligence gatherers during escalation events when engineering is called to the work cell so that they can spend less of their time on data gathering and more on re-engineering for root-cause elimination to remove the possibility for any undesired condition to reappear.
To help your factory take the next steps in the journey to digitalization, in this book, we’re going to look at some of the major hurdles that your teams face in collecting manufacturing data that then will be useful—not only for improving processes but also for improving materials and supply chain management, tracing the sources of problems and defective or counterfeit parts, and providing trends analysis for business forecasting and reporting. In our previous book The Printed Circuit Assembler’s Guide to… Advanced Manufacturing in the Digital Age, we looked at what needs to be done to create a smart factory that is able to collect data—including how to remove barriers in an organization, protect the data, and create a system for managing it.
In Chapter 1, we will look at the challenges of collecting good data and where collecting it makes sense for the factory and improving business. In Chapter 2, we will examine what makes data smart, meaning the difference between data on its own and analytics. In Chapter 3, we will cover how data can be distributed from the underlying infrastructure for external use. We also detail some of the tools available today to help you put these principles into practice and look at a real-world example of how companies are reaping the benefits of putting their data to good use with analytics.
The requirements for product quality and reliability contribute to the growing need for meaningful analytics in manufacturing. With growing demands from quality-sensitive industries—such as aerospace, automotive, smartphones, and medical—manufacturers need to ensure their factory operations work properly. Analyzing data simply is not enough. Company managers need to use analytics to create knowledge that can positively affect manufacturing.
Today, with internet of things (IoT) technology entering the manufacturing world, factory managers can take their efficiency and waste-reduction efforts to the next phase using big-data analytics. Advanced big-data analytics can help electronics manufacturers cope with the sheer number and complexity of production activities that influence yield, providing a granular approach to diagnosing and correcting process flaws.
Advanced analytics refers to the application of statistics and other mathematical tools to business data to assess and improve practices. In manufacturing, operations managers can use advanced analytics to take a deep dive into historical process data, identify patterns and relationships among discrete process steps and inputs, and then optimize the factors that prove to have the greatest effect on yield.
With IoT applications gathering huge amounts of real-time, shop-floor data constantly, what the electronics manufacturing industry now needs are analytics solutions that can aggregate these isolated data sets and analyze them to reveal important insights. These insights can be leveraged to enable better decision-making and ultimately reduce cost and waste.
To download this free eBook, published by I-Connect007, click here.
To view the entire I-Connect007 eBook library, click here.
Other related content
I-007e Micro Webinar: Implementing "Digital Twin" Best Practices From Design Through Manufacturing
Realtime with I-Connect007 Roundtable: Siemens and Computrol: Achieving Operational Excellence in Electronics Manufacturing
I-Connect007 Column: Lean Digital Thread, from Sagi Reuven, Siemens Digital Industries Software
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
U.S. CHIPS Act Funding Detailed on SIA Website
09/12/2025 | Nolan Johnson, I-Connect007The U.S. CHIPS Act has moved well into the implementation stage in 2025. But where has that money gone? The Semiconductor Industry Association has been tracking these projects and provides details on its website. It was updated May. Among the five key programs being managed under CHIPS, two stand out as influencing advanced electronic packaging: the National Advanced Packaging Manufacturing Program (NAPMP), and the CHIPS Manufacturing USA Institute (MFG USA).
Zhen Ding Drives AI-Powered Digital Transformation
09/12/2025 | Zhen DingDriven by the surging demand for computing power fueled by AI, the semiconductor and PCB industries are forging closer integration, expanding their ecosystems, and pursuing shared growth. PCB has already become another NT$ trillion-dollar industry in Taiwan, growing in tandem with the semiconductor sector.
Flex Named to TIME's World's Best Companies List for Third Consecutive Year
09/12/2025 | FlexFlex announced its inclusion on the TIME World's Best Companies 2025 list. This marks the third consecutive year the company was included in this prestigious ranking, which recognizes top-performing companies across the globe.
Secure Semiconductor Manufacturing Acquires Full SMT Line from Manncorp
09/11/2025 | ManncorpSecure Semiconductor Manufacturing, LLC (SSM), an American-owned company dedicated to producing secure printed wiring boards and advanced assembly solutions in the MidWest USA, today announced the acquisition of a complete surface mount technology (SMT) line from Manncorp.
GlobalLogic, Ericsson Deploy Private 5G Network at Hitachi Rail’s State-of-the-Art Digital Factory
09/11/2025 | BUSINESS WIREGlobalLogic Inc., a Hitachi Group company and leader in digital engineering, has designed and deployed a state-of-the-art 5G private network at Hitachi Rail’s most digitally advanced facility in Hagerstown, Maryland, USA.