-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueDesigning Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Isola Releases IS550H Material
April 26, 2021 | Nolan Johnson, I-Connect007Estimated reading time: 2 minutes

Nolan Johnson speaks with Michael Gay of Isola and Chris Hunrath of Insulectro about the release of their new halogen-free, high-thermal reliability material, which they hope fills the gap in the market between epoxies and polyimides.
Nolan Johnson: I understand there’s something new on the market for us to talk about. Why don’t you tell us what it is and what the application is?
Michael Gay: Quite a few years ago, the automotive industry OEMs were looking for an alternative to ceramic-based materials for high temperature applications. They wanted something that was less costly. They wanted something that would fill in the gap between typical FR-4 applications and ceramics. A consortium called The Help Project was developed with several large OEMs and other industry participants in the automotive sector who wanted to work together and develop this material. We started with about a half-dozen different candidates and then whittled it down, making comparison to products like 370HR, which is a typical FR-4 lead-free compatible material. We started doing evaluations and we came up with the product we now call IS550H.
Johnson: And this is a new product?
Gay: Yes, it’s brand new. We launched this product about four or five weeks ago. The product is manufactured in Asia. It’s really directed toward the automotive industry, but because of the properties of the material, it can actually be applied to other industries where high temperatures and high voltage CAF performance are required.
Johnson: From the automotive application perspective, how is this a response to the demands of OEMs?
Chris Hunrath: High-speed charging is an obvious area of concern, and one of the ways you accomplish that is using higher voltage. You need something with very good dielectric properties. Epoxy is good, but this material is better. Rapid charging drives this heavy copper requirement as well as the ability to make circuits and embed them in the dielectric material. With thermal performance, in the organic substrates, it has always been the domain of polyimide, with epoxies, multifunctional epoxies, and some materials in between. But there was a space between polyimide and epoxy, and we knew that polyimide doesn’t do certain things very well. It absorbs moisture, but it gets brittle as it cures. It is very decomposition resistant, but it does have some other drawbacks.
As Michael mentioned, ceramics are very good in certain applications for high temperature, but you can’t do everything you want to do in circuitry in ceramics that you can easily do with a PCB material or organic PCB material. This just gives the engineers and designers a whole lot of options when they’re designing circuits. The base resin chemistry (I don’t believe it’s proprietary) is something called benzoxazine, and it’s a newer resin system. It’s been around for a long time, but it’s newer than epoxy. The way it cross-links and the way it behaves in high temperature applications is different. It has actually been used in aircraft bodies. You’ve heard the airline industry is moving away from aluminum parts to composite parts. Well, this is the resin that is being used. Resin has to be able to flow and fill large features very well, but it also has to withstand temperature variations. Think of an aircraft on the runway vs. an aircraft in the upper atmosphere—we see some pretty wide temperature changes. This resin chemistry does all those things very well.
To read this entire interview, which appeared in the April 2021 issue of PCB007 Magazine, click here.
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.