-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Excerpt Chapter 5: 'The Printed Circuit Designer’s Guide to... Thermal Management with Insulated Metal Substrates, Vol. 2'
August 9, 2022 | Didier Mauve and Robert Art, VentecEstimated reading time: 2 minutes
Chapter 5: Boosting Thermal Performance with Multilayer IMS
In The Printed Circuit Designer’s Guide to... Thermal Management with Insulated Metal Substrates (Vol. 1), the authors briefly discussed the issues around combining multiple layers of copper foil, dielectric, and substrate materials and the design opportunities given by the latest generation of thermally conductive thin cores and prepregs.
The latest thermally conductive materials, prepregs, and cores allow designers to reconsider the thermal management approach. They can offer a simple and ready-to-use solution to address thermal issues on existing multilayer boards.
Through necessity, the industry has already come up with many solutions over the years, such as thermal vias, thermal coins, and inserts. All these existing solutions require either the use of thick copper foil and/or the use of heavy copper coins, thus leading to an inevitable inflation in cost and weight. We can now analyze alternative designs made possible by the arrival of multilayered IMS. The following application examples illustrate the concept and the main benefits of multilayered IMS.
Figure 5.1: Single-sided single layer.
The PCB design with insulated metal substrates is by no means limited to single-sided and single-layered circuits (Figure 5.1), although these are predominantly the types of circuits used in LED-lighting and power electronics applications.
There are several versatile ways to take advantage of IMS’s enhanced thermal properties in situations that demand various other attributes such as physical formability or compliance, an intricate shape or small dimensions, or a complex circuit layout that would be fulfilled with a multilayered PCB if it weren’t for the thermal issues.
If a formable grade of laminate (such as, for example, aluminum 5052 with a thin, non-reinforced dielectric) is specified, a single-sided circuit can be post-formed into three-dimensional shapes. This may help to design a circuit board that must fit inside a small or unusually shaped enclosure, or to cram more electronic circuitry within a limited space, or maybe ease assembly of a product if there is only minimal access to install electronic circuit boards. The aluminum layer is machined to reduce its thickness in the bend area.
Figure 5.2: Single-sided double layer.
Also, it is possible to build insulated metal substrates into multilayered IMS structures (Figure 5.2) with thermally conductive laminates and prepregs using plated-through holes for Z-axis interconnection.
In situations where the metal base is not an option, but the component temperature needs to be reduced, an alternative construction may be necessary; the thermal conductive cores and prepreg may be combined to create the entire board or may be used in a hybrid construction combining conventional FR-4 and thermal conductive cores or prepreg.
To continue reading this chapter, download your copy of this book from the I-007eBooks library today!
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.