-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssuePower Integrity
Current power demands are increasing, especially with AI, 5G, and EV chips. This month, our experts share “watt’s up” with power integrity, from planning and layout through measurement and manufacturing.
Signal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Rogers Corporation to Exhibit with John Coonrod Presenting at IMS 2023
June 8, 2023 | Rogers CorporationEstimated reading time: 1 minute

Rogers Corporation's Technical Marketing Manager, John Coonrod, will give two presentations June 14th in the MicroApps Theater at the International Microwave Symposium (IMS) in San Diego, CA. Topics include “3D Printed RF Structures Open the Potential to Think Out of the Box” and “Thermal Stability Consistency is Even More Important at Millimeter-Wave Frequencies.”
In addition, Rogers will be showcasing its products in Booth #1635 during IMS, the world’s largest RF and Microwave show, which takes place from Tuesday, June 13 to Thursday, June 15. These products include Radix™ 3D Printable Dielectrics and new Anteo™ low loss laminates.
Rogers new family of Anteo laminates is designed to offer low loss RF performance as an alternative to FR-4 in commercial and consumer applications. With a dielectric constant of 4.07 +/- 0.08 and a dissipation factor of .005 at 10 GHz, Anteo laminates offer two benefits in comparison to thicker grades of FR-4. For a comparable price, it offers superior performance and enables greater antenna gain and efficiency. But the lower dissipation factor also enables similar or marginally improved performance at 1/3rd to ½ the thickness of FR-4, thus providing a significant cost savings and improvement in packaging.
Radix™ 3D Printable Dielectric, is the first 3D material featuring a dielectric constant of 2.8 and low loss characteristics at microwave frequencies. These printable dielectric materials give radio frequency (RF) designers unprecedented design freedom in creating new components, eliminating the need to consider typical manufacturing design constraints.
Rogers Corporation’s Radix3D Printable Dielectric is a proprietary composite material designed for Digital Light Processing (DLP) 3D printing, enabling a scalable, high-resolution printing process for end-use RF dielectric component manufacturing. This printable dielectric material has a targeted dielectric constant of 2.8 and a dissipation factor of 0.0043 at 10 GHz when cured.
The material is intended for use as RF material in applications where new geometric freedom can enhance the figure of merits of an RF system, such as gradient dielectric constant (GRIN) structures and other complex three-dimensional parts. The Radix 3D Printable Dielectric offers the industry a way to manufacture systems and components at scale that could not be made with traditional fabrication methods. Radix materials are available directly from Rogers Corporation and our 3D printing partners. Learn more about Radix 3D Printable Dielectrics by visiting Rogers YouTube channel.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Compunetics Advances PCB Manufacturing with MicroCraft’s Dual-Ink CraftPix Inkjet Printer
09/30/2025 | MicroCraftMicroCraft, a global leader in advanced PCB testing and digital inkjet printing systems, has completed the installation of its CraftPix C2K6151PT dual-ink inkjet printer at Compunetics, Inc., a premier flex and rigid printed circuit board manufacturer located just outside Pittsburgh, Pennsylvania.
Printed Electronics Market Size to Top $83.77 Billion by 2034 Driven by IoT Adoption and Flexible Device Demand
09/11/2025 | Globe NewswireThe printed electronics market size has been calculated at U$19,920 million in 2025 and is expected to grow from $23,58 million in 2026 to approximately $83,770 million by 2034.
Electroninks Acquires Complete UTDots Advanced Materials Nanoinks Portfolio and IP
05/19/2025 | ElectroninksElectroninks, the leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, announced it has officially completed its full acquisition of UTDots products and IP into its portfolio, further expanding its offerings in digital printing for high-performance applications.
Happy’s Tech Talk #38: Novel Metallization for UHDI
05/07/2025 | Happy Holden -- Column: Happy’s Tech TalkI have been involved in high-density electronics substrates since 1970 when I joined Hewlett-Packard’s RF semiconductor group after college. Figure 1 shows the difference between trace/space lithography for substrates and silicon starting in 1970. My projects involved sapphire circuits for RF devices, but the figure displays the state of PCBs and integrated CMOS circuits and their packaging, not discreet RF devices. Even then, semiconductors were 50X higher density.
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.