-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueDesigning Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Advanced Materials Update with John Andresakis
October 26, 2023 | Andy Shaughnessy, Design007Estimated reading time: 6 minutes

At PCB West, I sat down for an interview with John Andresakis, the director of business development for Quantic Ohmega. I asked John to update us on the company’s newest materials, trends in advanced materials, and the integration of Ticer Technologies, which Quantic acquired in 2021. As John explains, much of the excitement in materials focuses on laminates with lower and lower dielectric constants.
Andy Shaughnessy: John, good to see you again. Tell us about the new company, which now has Ohmega and Ticer Technologies under one roof.
John Andresakis: The company name is Quantic Ohmega. It's a result of taking Ohmega and Ticer and putting them together under one umbrella. Quantic is our parent corporation, and it includes a group of about 15 businesses that were put together by a venture capital firm that deals in high-reliability, mission-critical electronics. By combining these companies, we leverage our collective knowledge and gain the stability of being a bigger organization while maintaining the flexibility and responsiveness of a small company.
Shaughnessy: As a materials guy, what are some of the trends you're seeing in materials now?
Andresakis: In our business, resistor foils, we're following the trends of what the copper foils producers are making, basically going to copper foils that have a lower profile. This is due to the need for better high-frequency response. We use them as our base surface for plating or sputtering. We have a low-profile option (Ticer EHF) but we are working on some even lower-profile coppers.
The trick here is to make sure we keep the uniformity of our coating while at the same time having good adhesion to these advanced substrates. We're finding the same problem that the copper suppliers have seen: The high-performance laminates are getting harder and harder to adhere to, so we're working on improving adhesion to bond the copper to those types of laminates.
We're doing some high-frequency testing with the TCR EHF, and so far, it looks very encouraging. The simulation and the actual results agree closely. We did this with a sister division called X Microwave, and along with an FR/MW design group we've built and tested attenuators to determine the high-frequency performance of our resistors. We know we have customers who are using our materials at high frequency, but a lot of times they won't share the data, so we must come up with our own. Now we're in the process of putting all of that together, and hopefully, we'll be able to present the data from this at an industry event soon.
We have another product now which we're calling EPS: it’s a foil from Japan, and it is extremely low profile. We've been able to successfully bond it to PTFE-type materials and are working on improving the adhesion to other laminates. Initial loss measurements show the expected lower loss at high frequency due to the low profile.
Another trend is that people are moving towards even finer lines and spaces needed for organic chip packaging, so now we're working on foils and resistor layers that can be used for termination resistors on chip packages. We’re looking more into the chip packaging market as an opportunity, especially with chiplets and other packaging schemes evolving. If they can get rid of passive components and put them inside the package versus being on the surface, that's a big benefit.
Shaughnessy: They’re almost like mini circuit boards, basically.
Andresakis: Yes, basically. From a cost standpoint, if you think of an organic package versus a ceramic package, there’s a big cost savings. This copper foil that we're working on is very good for buildup technology and can be used for making the sequential laminations they need for advanced packaging. We’re also seeing, especially in medical applications, people are interested in our resistor materials because they can be used as a heater.
We have a number of heater circuit projects. Now people can use it to heat up a substrate to a certain temperature for optimizing a process, ensuring an electronic device can work in cold environments (like space) or simply as a reference temperature. If you want to do a burn-in board, they can bring the temperature up on the burn-in board. There’s a lot you can do with just a single layer of our material underneath. And it's incorporated right into your circuit board as opposed to having just a separate heater circuit. We are seeing a lot of interest in the heater market, with most of it in the biomedical segment.
Shaughnessy: What other new materials are you seeing now that are really interesting or innovative?
Andresakis: There’s a lot of environmental push now around fluorinated products, so a lot of work is going into finding substitutes. This is very tough because there really are few things that are as good as Teflon. It’s an area that a lot of people are looking into. I haven't seen any real viable alternatives yet. We’ve done some collaborative work with a company called Blue Shift, and they make a polyimide aerogel. The thing about aerogel is that it’s mostly air, with just a small amount of polyimide holding it together. It was developed as a great thermal insulator, but since it is mostly air, and air has a Dk of 1 it has a low dielectric constant (polyimide has a Dk of about 3.2 so you can get an effective Dk of 1.5 or less with these aerogels). The only restriction right now is that they can only make it five mils thick or thicker; it's hard to make it thinner. Processing it is also a challenge because you need to avoid collapsing the cells during processing. They have, however, been able to make some prototype boards.
The dielectric is an area where a lot of work is going on, but also in reinforcements. I think that people are looking at alternative reinforcements now. We can use fiberglass, spread glass, and some of the newer low-loss glasses, but technologists are now looking for an advantage in using organic reinforcement (lower Dk and chance of lower skew). There are going to be some changes, but the material world moves very slowly because designers and program managers are conservative. No one wants to be the first one to stick their neck out unless they have to.
We're also working on a couple of sensors in the automotive world, where our resistivity and the change of resistivity over time, in a controlled way, will actually allow them to check the status of certain components inside the car. I can't give any more detail at this time until it's announced. But right now, your car will give you a warning sign if a system is about to fail. But we don’t want to wait until then and we want real time indication of life. With this sensor, we can tell you how much something is changing over time. It’s predictive maintenance.
Shaughnessy: Is there anything else you’d like to mention?
Andresakis: We just launched a brand-new website, with an updated technical library. If you sign up for the technical library, we have a lot of tools on how to use the material, the processing, how to calculate the maximum power they can handle, as well as some application notes.
Shaughnessy: Great catching up with you, John. Thanks so much.
Andresakis: Thank you, Andy.
Suggested Items
Commerce Secretary Howard Lutnick Visits TSMC Arizona Fabrication Facility for Third Fab Ground Breaking
05/02/2025 | U.S. Department of CommerceU.S. Secretary of Commerce Howard Lutnick visited the Taiwan Semiconductor Manufacturing Company (TSMC) semiconductor fabrication facility in Phoenix, Arizona where the company broke ground on a third fab facility.
Machine Vision: MVTec Expands Deep Learning Portfolio with New Versions of its Deep Learning Tool
04/29/2025 | MVTec Software GmbHThe machine vision industry is gaining significant momentum by using deep learning, a subset of artificial intelligence, which allows for the automation of entirely new applications and improved results.
Libra Industries Joins the National Association of Manufacturers (NAM) to Advance American Manufacturing
04/29/2025 | Libra IndustriesLibra Industries, a leading provider of systems integration and electronics manufacturing services (EMS), is pleased to announce its new membership with the National Association of Manufacturers (NAM), the largest and most influential manufacturing trade association in the United States.
Candor Elevates PCB Fabrication Services with Continued Facility Upgrades
04/28/2025 | Candor CircuitsOntario-based circuit board manufacturer, Candor Circuit Boards has recently completed a series of facility upgrades to improve their PCB offerings. These investments will allow Candor to provide higher volumes of complicated boards more efficiently with better yield. The new technology has allowed the company to take on exciting high technology projects and collaborations in industries such as Military and Aerospace, Medical, Energy and more.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.