-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
IDTechEx Report Unveils 3D Electronics Status and Opportunities
April 22, 2024 | PRNewswireEstimated reading time: 4 minutes
3D electronics is an emerging manufacturing approach that enables electronics to be integrated within or onto the surface of objects. 3D electronic manufacturing techniques empower new features, including mass customizability, greater integration, and improved sustainability in the electronics industry. There are three main approaches to 3D electronics: applying electronics to a 3D surface, in-mold electronics, and fully printed 3D electronics. Each approach is discussed in detail in the newly launched IDTechEx report "3D Electronics/Additive Electronics 2024-2034: Technologies, Players, and Markets".
Applying electronics to 3D surfaces
The most established approach to adding electrical functionality onto the surface of 3D objects is laser direct structuring (LDS). LDS saw tremendous growth around a decade ago and is used to manufacture hundreds of millions of devices each year, including antennas and simple conductive interconnects to the surface of 3D injection-molded plastic objects. However, despite its high patterning speed and widespread adoption, LDS has some weaknesses that leave space for alternative approaches to surface metallization. For example, valve jet printing, also known as dispensing, is already being used for a small proportion of antennas. This technique enables the rapid deposition of a wide range of materials.
Aerosol jetting and laser-induced forward transfer (LIFT) are other digital deposition technologies covered in the report. These technologies offer higher resolutions and rapid deposition of a wide range of materials, respectively. The IDTechEx report also benchmarks other emerging techniques, such as ultra-precision dispensing, electrohydrodynamic printing, impulse printing, pad printing, and spray metallization. IDTechEx forecasts a gradual growth in the market for partially additive electronics, particularly in the telecommunications and microelectronics sectors.
In-mold electronics
In-mold electronics (IME), in which electronics are printed/mounted prior to thermoforming into a 3D component, facilitate the transition towards greater integration of electronics, especially where capacitive touch sensing and lighting are required. IME offers multiple advantages relative to conventional mechanical switches, including a reduction in weight and material consumption of up to 70% and much simpler assembly.
The IME manufacturing process can be regarded as an extension of the well-established in-mold decorating (IMD) process. Thus, much of the existing process knowledge and capital equipment can be reused. IME differs from IMD through the initial screen printing of conductive thermoformable inks, followed by the deposition of electrically conductive adhesives and the mounting of SMDs (surface mount devices, primarily LEDs at present). More complex multilayer circuits can also be produced by printing dielectric inks to enable crossovers.
Despite the advantageous features, commercial deployment of IME-integrated SMD components has thus far been fairly limited. This relatively slow adoption, especially within the primary target market of automotive interiors, is attributed to both the challenges of meeting automotive qualification requirements and the range of less sophisticated alternatives, such as applying functional films to thermoformed parts. Along with greater acceptance of the technology, the adoption of IME will require clear design rules, materials that conform to established standards, and, crucially, the development of electronic design tools. IDTechEx predicts that the most significant growth in 3D electronics will occur in in-mold electronics (IME) once it passes its validation stage.
Fully printed 3D electronics
Arguably, the most innovative approach to additive electronics is fully printed 3D electronics, in which dielectric and conductive materials are sequentially deposited. Combined with placed SMD components, this results in a circuit, potentially with a complex multilayer structure embedded in a 3D plastic object. The core value proposition is that each object and embedded circuit can be manufactured using a different design without the expense of manufacturing masks and molds each time.
Fully 3D printed electronics are thus well suited to applications where a wide range of components need to be manufactured at short notice. The technology is also promising for applications where a customized shape and even functionality are important. The ability of 3D printed electronics to manufacture different components using the same equipment and the associated decoupling of unit cost and volume could also enable a transition to on-demand manufacturing.
The challenge for fully 3D printed electronics is that manufacturing is fundamentally a much slower process than making parts via injection molding since each layer needs to be deposited sequentially. While the printing process can be accelerated using multiple nozzles, it is best targeted at applications where customizability offers a tangible advantage. Ensuring reliability is also a challenge, considering different material properties; additionally, with embedded electronics, post hoc repairs are impossible - one strategy is using image analysis to check each layer and perform any repairs before the next layer is deposited.
Comprehensive analysis and market forecasts
The new IDTechEx report, "3D Electronics/Additive Electronics 2024-2034: Technologies, Players, and Markets", analyzes the technologies and market trends that promise to bring electronics manufacturing into the 3D realm. Drawing from over 30 company profiles, the report assesses three distinct segments of the 3D electronics landscape. The IDTechEx report evaluates each segment's different technologies, potential adoption barriers, and application opportunities.
IDTechEx's new report also includes detailed 10-year market forecasts for each 3D electronics manufacturing technology, segmented by application sector and delineated by both revenue and area/volume.
Suggested Items
PCB Design Software Market Expected to Hit $9.2B by 2031
11/21/2024 | openPRThis report provides an overview of the PCB design software market, detailing key market drivers, challenges, technological advancements, regional dynamics, and future trends. With a projected compound annual growth rate (CAGR) of 13.4% from 2024 to 2031, the market is expected to grow from USD 3.9 billion in 2024 to USD 9.2 billion by 2031.
IPC Issues Clarion Call for EU to Reclaim Leadership in Electronics Manufacturing
11/21/2024 | IPCIPC released a synopsis of its recent white paper, Securing the European Union’s Electronics Ecosystem. This condensed document presents a comprehensive overview of the current challenges in Europe’s electronics manufacturing industry and shares actionable steps to help the EU achieve a stronger, more autonomous ecosystem.
IPC Celebrates National Apprenticeship Week with a Focus on Electronics Manufacturing Excellence
11/19/2024 | IPCIPC, a leading global electronics industry association and source for industry standards, training and advocacy, is proud to announce its participation in National Apprenticeship Week, scheduled for November 17-23, 2024.
IPC Introduces First Standard for In-Mold Electronics
11/18/2024 | IPCIPC announces the release of IPC-8401, Guidelines for In-Mold Electronics. IPC-8401 addresses in-mold electronics (IME) technology, providing industry consensus on guidelines for manufacturing processes, part structures, material selection, and production test methods to integrate printed electronics and components into 3D smart structures.
Disruptive Innovation and Generative AI Inventor, Kevin Surace, to Keynote IPC APEX EXPO 2025
11/15/2024 | IPCEach year, IPC APEX EXPO features industry’s most dynamic, innovative minds to deliver keynote presentations that are both educational and entertaining. IPC APEX EXPO 2025 will feature Kevin Surace, an internationally renowned futurist and generative artificial intelligence (AI) innovator.