-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueCreating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
UHDI Fundamentals: UHDI for RF Microwave Applications
July 16, 2024 | Anaya Vardya, American Standard CircuitsEstimated reading time: 2 minutes

Ultra high-density interconnect (UHDI) technology has significant potential for RF (radio frequency) microwave applications. Its advantages lie in its ability to provide high-density routing and integration, which are crucial for complex RF circuits. Here are three key UHDI benefits in RF microwave applications:
1. Signal Integrity
In RF applications, signal integrity is paramount. UHDI facilitates controlled impedance routing, reducing signal loss and ensuring reliable transmission of RF signals. UHDI improves signal integrity in the following ways:
- Controlled impedance routing: UHDI allows for precise control over the impedance of transmission lines, which is crucial for maintaining signal integrity in RF circuits. Controlled impedance ensures that signals propagate with minimal reflections and distortion, especially at high frequencies.
- Reduced crosstalk: UHDI enables dense routing of transmission lines while minimizing the spacing between them. This reduces the likelihood of crosstalk, where signals from adjacent traces interfere with each other, thus preserving the integrity of individual signals.
- Optimized via placement: UHDI facilitates strategic placement of vias (vertical interconnect access) to minimize signal distortion and reflections. By optimizing via placement, signal paths can be kept short and impedance transitions can be managed effectively, reducing signal degradation.
- High-frequency performance: UHDI substrates are designed to support high-frequency operation, typically with low dielectric loss and low dispersion characteristics. This ensures that RF signals can propagate efficiently without significant attenuation or distortion, maintaining signal integrity across the frequency spectrum.
- Shielding and grounding: UHDI designs can incorporate shielding layers and efficient grounding techniques to minimize electromagnetic interference (EMI) and maintain a clean RF environment. Proper shielding and grounding help prevent external noise from degrading signal quality.
- Signal integrity simulation and modeling: Advanced simulation and modeling tools are available for UHDI designs, allowing engineers to analyze signal integrity characteristics such as impedance matching, reflection coefficients, and insertion loss. These tools enable designers to optimize layouts for optimal signal integrity performance.
- Thermal management: Thermal issues can impact signal integrity in RF circuits, particularly at high power levels. UHDI designs can incorporate thermal management techniques such as thermal vias and heat sinks to dissipate heat effectively, ensuring stable performance of RF components.
- Low loss materials: UHDI substrates can utilize low-loss dielectric materials that minimize signal attenuation and phase distortion, particularly at high frequencies. This ensures that RF signals maintain their integrity as they propagate through the circuit.
To read the entire article, which originally appeared in the July 2024 Design007 Magazine, click here.
Suggested Items
Global PCB Connections: Rigid-flex and Flexible PCBs—The Backbone of Modern Electronics
05/20/2025 | Jerome Larez -- Column: Global PCB ConnectionsIn the past decade, flex and rigid-flex PCB technology has become the fastest-growing market segment. As an increasing number of PCB companies develop the capabilities to fabricate this technology, PCB designers are becoming comfortable incorporating these designs into their products.
Tips to Master the ‘Black Magic’ of RF Design
05/01/2025 | Andy Shaughnessy, Design007For this issue on RF design, I reached out to Zach Peterson, founder of Northwest Engineering Solutions, an engineering design services company in Portland, Oregon. You can find some of Zach’s RF design presentations on YouTube; he does a great job breaking down these complex ideas for PCB designers who are new to the RF side of things. I asked Zach to discuss the challenges facing RF designers, the relevant material considerations, and the layout tips and techniques that can help RF designers master this “black magic” technology.
The EEcosystem and Dr. Eric Bogatin Launch Free Masterclass for Electronics Engineers
05/01/2025 | The EEcosystemThe EEcosystem, a podcast media and education brand serving professional electronics engineers, is proud to announce the launch of a new online learning platform: The EEcosystem Electronics Masterclass. The platform debuts with Transmission Lines 101, a free course created in partnership with world-renowned signal integrity expert Dr. Eric Bogatin. The course will be available starting May 1, 2025.
NEXT Semiconductor Technologies Collaborates with BAE Systems to Develop Next Generation Space-Qualified Chips
04/28/2025 | PRNewswireNEXT Semiconductor Technologies is collaborating with BAE Systems to accelerate the insertion of its latest ultra-wideband antenna processor units (APUs) into high-performing radiation-hardened electronic subsystems to support future space missions.
Elementary Mr. Watson: Navigating RF—A Glide Path Approach to Design Success
04/24/2025 | John Watson -- Column: Elementary, Mr. WatsonOn a flight, I can always tell when we begin our descent because that subtle drop in my stomach tells me the altitude has changed. Landing an airplane involves a gradual, precise process called the glide path. It descends at the correct speed and 3-degree angle to touch down smoothly and safely on the runway without bouncing or coming to a sudden stop. Pilots use specialized tools like the Instrument Landing System (ILS) or GPS to stay on the correct path. Lights on the ground, called PAPI lights, help pilots know if they are too high or too low.