-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueMoving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
MANA Develops Ferroelectric-ferromagnetic Materials for Next-generation Electronics
January 7, 2025 | PRNewswireEstimated reading time: 1 minute
Researchers at the Research Center for Materials Nanoarchitectonics (MANA) have proposed a method to create ferroelectric-ferromagnetic materials, opening doors to advancing spintronics and memory devices.
In 1831, Michael Faraday discovered the fundamental connection between electricity and magnetism, demonstrating that a changing magnetic field induces electric current in a conductor.
In a recent study, MANA researchers have proposed a method for designing ferroelectric-ferromagnetic (FE-FM) materials, which exhibit both ferroelectric and ferromagnetic properties, enabling the manipulation of magnetic properties using electric fields and vice versa. Such materials are highly promising for spintronics and memory devices. The advantage of FE-FM materials, extremely rare in nature, is their ability to achieve the cross-control by relatively low electric and magnetic fields. The study, led by Principal Researcher Igor Solovyev from MANA, NIMS, included contributions from Dr. Ryota Ono from MANA, NIMS, and Dr. Sergey Nikolaev from the University of Osaka, Japan.
Ferroelectric materials possess a permanent electric polarization, usually arising from ion displacement in their crystalline lattice and resulting in the formation of charged electric dipoles, which align in the same direction. The key feature of ferromagnetic materials is the uncompensated magnetic moment produced by electron spins and orbital motion. Combining both properties in a single material is challenging since the ion displacement enabling ferroelectricity can disrupt the magnetic ordering needed for ferromagnetism. Similarly, the ferromagnetic alignment of magnetic moments is not sufficient for breaking the spatial inversion symmetry required for producing ferroelectricity.
The authors of the current study proposed that antiferro orbital ordering, driven by the Kugel-Khomskii mechanism, where electrons tend to occupy alternating orbitals, can promote both ferromagnetic interactions and break the inversion symmetry. When tested on VI3, a van der Waals ferromagnet with a honeycomb structure, this ordering resulted in an FE-FM ground state.
"By properly arranging occupied atomic orbitals in a solid, one can make the material not only ferromagnetic but also ferroelectric," says Dr. Solovyev, highlighting the potential of this approach for developing next-generation electronic devices based on multiferroic materials and ferroelectric ferromagnets.
Suggested Items
Panasonic Appoints Matrix as its Authorized Distributor in Europe
06/03/2025 | Matrix ElectronicsEffective July 1st, 2025, Panasonic Industry Co., Ltd. has appointed Matrix Electronics Limited as its Authorized Distributor in the European region.
Indium Joins Virginia Tech Center for Power Electronics Systems Industry Consortium
06/03/2025 | Indium CorporationIndium Corporation®, a leading materials refiner, smelter, manufacturer, and supplier to the global electronics, semiconductor, thin-film, and thermal management markets, has joined Virginia Tech’s Center for Power Electronics Systems (CPES), an industry consortium that supports power electronics initiatives to reduce energy use while growing capability.
Strategic Materials Conference 2025 Spotlights Materials Innovation to Advance Semiconductor Manufacturing
06/02/2025 | SEMIWith materials innovation at the core of next-generation semiconductor technologies, the Strategic Materials Conference (SMC) 2025 brings together top executives and technology leaders from the semiconductor manufacturing industry for exclusive insights into the latest trends and advancements.
CE3S Launches EcoClaim Solutions to Simplify Recycling and Promote Sustainable Manufacturing
05/29/2025 | CE3SCumberland Electronics Strategic Supply Solutions (CE3S), your strategic sourcing, professional solutions and distribution partner, is proud to announce the official launch of EcoClaim™ Solutions, a comprehensive recycling program designed to make responsible disposal of materials easier, more efficient, and more accessible for manufacturers.
American Made Advocacy: Lobbying Congress Supports the Supply Chain
05/27/2025 | Shane Whiteside -- Column: American Made AdvocacyThe upheaval in world markets is driving daily headlines. The global supply chain has seemed “normal” for the microelectronics industry because over the past three decades, an increasing percentage of microelectronics components and materials have been made overseas. For many years, other countries, primarily in Asia, invested heavily in their microelectronics industry while U.S. companies offshored manufacturing services in pursuit of the lowest cost.