-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Thermal Management for LED Lighting Applications
April 21, 2015 | Les Round, Spirit CircuitsEstimated reading time: 3 minutes

PCB substrates designed for thermal management have been around for a number of years, traditionally servicing power-related applications; however, there are now many more suppliers and substrates emerging to meet the growing demand from LED lighting products. The LED package emits light forward and any excess heat is designed to be dissipated from the base of the component, usually through a bespoke thermal pad or through either the anode or cathode pads. Like other electronic components, the failure rate of an LED doubles with every 10°C increase in junction temperature. So based on the fact that reliability and longevity are key requirements for the successful uptake of LED lighting, good thermal management is an essential element in this growth.
A wide range of available LEDs put varying thermal demands onto the PCB substrate. Low-wattage (0.25W LEDs) and low-density applications are typically dealt with by using standard, single-sided FR-4 or CEM PCBs, where all the heat must be dissipated at the surface and the thermal performance is enhanced by using large copper lands (for heat spreading) and higher copper weights when required. The FR-4/CEM materials are very good thermal insulators and so obtain little or no benefit from a secondary heat sink and the operating temperature is directly influenced by the ambient temperature and although this does limit the use of this technology, it still represents a significant part of the LED market. It should be noted that there are some new FR-4/CEM style laminates that have been developed with a higher thermal conductivity, which allow the LEDs to benefit from secondary heat-sinking.
For mid-power (1.0W LEDs), moderate density applications, where the thermal requirements are beyond the capability of a standard, single-sided PCB, the next level of thermal performance comes from FR-4 PTH PCBs using thermal vias to enhance heat dissipation. The heat generated by the LED spreads across the pad and then down the plated via holes to a large copper area on the other side of the board, this heat can then be dissipated into a secondary heat sink. The holes around the LED pads do limit the potential LED density, and from our experience we find that holes placed further than 5 mm from the LED have a much reduced effect on the junction temperature. Obviously, the use of via-in-pad technology will allow for higher LED packing densities but this does create other assembly issues (and if this means using hole-filling, then any cost-savings for using FR-4 will be eroded); however, via-in-pad will improve the thermal performance when compared to having vias around the LED.
To obtain the maximum thermal performance from this PTH approach will require the use of an isolating thermal interface material (TIM), which will eliminate the risk of electrical leakage and help considerably with heat dissipation (into a secondary heat-sink). Ideally, the non-LED side should have no solder resist coating as this provides the best transfer of heat (i.e., using the TIM to provide the electrical isolation); however, many applications use a solder resist in order to ensure the PCB is electrically isolated from the heat sink.
When it comes to mid- to high-power or high-density LED applications, many companies turn to insulated metal substrates (IMS) because it provides a convenient and reliable thermal solution as it comes with an in-built heat-sink. The IMS is a relatively simple material which comprises of a copper foil bonded to a metal base with a thin dielectric. The copper foil provides the circuit image, and because the heat dissipation is primarily routed directly through the dielectric, then the copper weight is less of an issue (as with FR-4 products) and this helps when tracking high-density designs. The metal base is usually aluminium because of its light weight and relatively low cost, and because it is a well-established heat-sink material (thermal conductivity 140–200 W/mK, depending on the grade). For more demanding applications, copper is used (thermal conductivity ~400 W/mK) even though it is heavier and more expensive. It is in the dielectric layer where we see the main difference between suppliers (and their product range), although they all tend to be thin layers (sub 0.20 mm) with a varying level of thermal properties. Typically, the thermal performance of these dielectrics is enhanced by the addition of ceramic materials (such as aluminium oxide, aluminium nitride and boron nitride), increasing the thermal conductivity of the base resin from around 0.25W/mK to upwards of 5W/mK.
Editor's Note: This article originally appeared in the March 2015 issue of The PCB Magazine
Suggested Items
Indium’s Karthik Vijay to Present on Dual Alloy Solder Paste Systems at SMTA’s Electronics in Harsh Environments Conference
05/06/2025 | Indium CorporationIndium Corporation Technical Manager, Europe, Africa, and the Middle East Karthik Vijay will deliver a technical presentation on dual alloy solder paste systems at SMTA’s Electronics in Harsh Environments Conference, May 20-22 in Amsterdam, Netherlands.
SolderKing Achieves the Prestigious King’s Award for Enterprise in International Trade
05/06/2025 | SolderKingSolderKing Assembly Materials Ltd, a leading British manufacturer of high-performance soldering materials and consumables, has been honoured with a King’s Award for Enterprise, one of the UK’s most respected business honours.
Knocking Down the Bone Pile: Gold Mitigation for Class 2 Electronics
05/07/2025 | Nash Bell -- Column: Knocking Down the Bone PileIn electronic assemblies, the integrity of connections between components is paramount for ensuring reliability and performance. Gold embrittlement and dissolution are two critical phenomena that can compromise this integrity. Gold embrittlement occurs when gold diffuses into solder joints or alloys, resulting in mechanical brittleness and an increased susceptibility to cracking. Conversely, gold dissolution involves the melting away of gold into solder or metal matrices, potentially altering the electrical and mechanical properties of the joint.
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.
BEST Inc. Reports Record Demand for EZReball BGA Reballing Process
05/01/2025 | BEST Inc.BEST Inc., a leader in electronic component services, is pleased to announce they are experiencing record demand for their EZReball™ BGA reballing process which greatly simplifies the reballing of ball grid array (BGA) and chip scale package (CSP) devices.