-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current Issue
Spotlight on Mexico
Mexico isn’t just part of the electronics manufacturing conversation—it’s leading it. From growing investments to cross-border collaborations, Mexico is fast becoming the center of electronics in North America. This issue includes bilingual content, with all feature articles available in both English and Spanish.
Production Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
- Articles
Article Highlights
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Solder Paste Stencil Design for Optimal QFN Yield and Reliability
April 29, 2015 | Ben Gumpert, Lockheed MartinEstimated reading time: 13 minutes
One assembly was cross-sectioned to evaluate solder joint heights, and the rest were subjected to thermal cycling. The assemblies were continuously electrically monitored during testing to identify when component failures occur. An air-circulating environmental chamber and a thermal cycle of -55°C to 125°C were used. The chamber includes a continuous recording unit for temperature. The ramp rate was set to 4.5°C/min and the dwell time set to 15 minutes.
An electrical continuity monitor was used determine time of failure for individual components. Testing was performed in accordance with IPC-SM-785 standard, with failures identified as short duration, high resistance spikes as described in section 4.3.1 of that guideline. Variations in channel current-loop resistance which exceed the selected threshold resistance were flagged as events, subject to the minimum event duration limit.
Results
Thirteen cards were built with a total of 20 QFN44 and 28 QFN68 packages on each card. Table 2 shows results from cross-section measurements, x-ray inspection, and continuity check. Several points are evident from these results. The first is that ‘open’ defects were present in the QFN68 locations where the least amount of solder reduction was applied. The QFN44 package did not exhibit any of these open defects. Bridging was not a common problem, but seems to have occurred randomly.
Voiding levels were fairly low. Only three locations had total voiding above 25%, and some of these were attributed to ‘bottoming-out’ of the component on the solder mask at B1 sites. It was determined that the solder volume at these sites was low enough such that some parts were resting on the solder mask, which enabled voids to remain in the solder joint instead of making their way out.
One test board was selected for cross-sectioning to evaluate solder joint heights and geometry. Figures 4 and 5 are representative images of the solder joints formed. On components with a larger stand-off height (i.e. taller solder joints), the solder at the toe is slightly concave in shape, while it is convex on the parts with a lower stand-off. This demonstrates that the sizing of the stencil apertures at the perimeter pin locations was not quite compensated enough to achieve consistent fillets at all locations. Solder joint open defects were reworked by hand and were tied in for thermal cycle testing, although the locations were noted for future reference to determine the impact that rework may have on reliability.
Solder joint height for the QFN package is generally defined by the amount of solder applied to the center pad. In this study, the PCBs used had a HASL finish, so they have some volume of solder already present on the center pad. Cross section measurements of the solder joint height (actual height) were compared to the expected values at each location, as seen in Figure 6. This data demonstrates a good trend, and variation seen is attributed to three main variables; pre-existing solder volume from HASL, solder volume applied in-process, and variation of the QFN position in the cross-section (i.e. potential tilt of the package).
To date, the test vehicles have been exposed to 1100+ thermal cycles (-55°C to 125°C), with the profile as shown in Figure 7. There have been only four failures out of the 576 locations thus far. These failures have each been from a QFN68 package of a unique site, but none of these sites were those with greater than 50% solder reduction (the standard lower limit for paste application.)
Page 3 of 4
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
Learning With Leo: UHDI—The Next Leap in PCB Manufacturing
11/05/2025 | Leo Lambert -- Column: Learning With LeoHigh density interconnect (HDI) technology has been a cornerstone of miniaturized electronics since Hewlett-Packard introduced the first chip-scale implementation in 1982. Over time, HDI processes became central to organic flip-chip packaging in the semiconductor industry. Today, the convergence of IC substrates and system-level PCBs has accelerated the adoption of UHDI.
BTU International Earns 2025 Step-by-Step Excellence Award for Its Aqua Scrub™ Flux Management System
10/29/2025 | BTU International, Inc.BTU International, Inc., a leading supplier of advanced thermal processing equipment for the electronics manufacturing market, has been recognized with a 2025 Step-by-Step Excellence Award (SbSEA) for its Aqua Scrub™ Flux Management Technology, featured on the company’s Pyramax™ and Aurora™ reflow ovens.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.