-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAll About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Estimated reading time: 1 minute

Beyond Design: Learning the Curve
Currently, power integrity is just entering the mainstream market phase of the technology adoption life cycle. The early market is dominated by innovators and visionaries who will pay top dollar for new technology, allowing complex and expensive competitive tools to thrive. However, the mainstream market waits for the technology to be proven before jumping in. Power distribution network (PDN) planning was previously overlooked during the design process, but it is now becoming an essential part of PCB design. But what about the learning curve? The mainstream market demands out-of-the-box, ready-to-use tools.
The mainstream market, representing more than 65% of the total EDA software market, wants established technology at an affordable price. The majority of high-end tools require a PhD to drive. However, the mainstream market demands tools that are intuitive and can be used by any member of the development team from EEs to PCB designers to achieve quick results.
Inadequate power delivery can exhibit intermittent signal integrity issues. These include high crosstalk and excessive emission of electromagnetic radiation, degrading performance and reliability of the product. The PDN must accommodate variances of current transients with as little change in power supply voltages as possible. So the goal of PDN planning is to design a stable power source for all the required power supplies. As with stackup planning, the PDN design is required before a single IC is placed on the board.
Also, the same PDN connections (planes) that are used to transport high-transient currents are used to carry the return currents for critical signal transmission lines. If high-frequency switching noise exists on the planes, coupling may occur, resulting in ground bounce, bit failure or timing errors. Many failures to pass electromagnetic compliancy (EMC) are due to excessive noise on the PDN coupling into external cables and radiating emissions.
If you are not familiar with a PDN plot (AC impedance vs. frequency), it can be awfully daunting at first.
To read the rest of this column, which appeared in the April 2015 issue of The PCB Design Magazine, click here.
More Columns from Beyond Design
Beyond Design: The Metamorphosis of the PCB RouterBeyond Design: Radiation and Interference Coupling
Beyond Design: Key SI Considerations for High-speed PCB Design
Beyond Design: Electro-optical Circuit Boards
Beyond Design: AI-driven Inverse Stackup Optimization
Beyond Design: High-speed Rules of Thumb
Beyond Design: Integrated Circuit to PCB Integration
Beyond Design: Does Current Deliver the Energy in a Circuit?