-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current Issue
The Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Characterization of PCB Material & Manufacturing Technology for High-Frequency
September 2, 2015 | E. Schlaffer, AT&S; and O. Huber, T. Faseth, and H. Arthaber, University of Technology, ViennaEstimated reading time: 15 minutes
Figure 10: Loss difference MS.
The second transmission mode is CBCPW. CBCPW typically exhibits larger losses over frequency for the same length L when it is compared to MS, as higher conductor loss occurs due to the additional ground planes on top of the structure[3]. In this case, as the dimensions of the measured samples imply a dominant wave propagation in the substrate, the total losses are just slightly higher as for the discussed MS lines. Figure 11 displays the measurement results for material type A. The difference of the losses of the structuring processes to be compared appears to be already present for very low frequencies and that for all three line lengths. For higher frequencies the impact of fabrication process does not seem to increase much. At 110 GHz for L = 20 mm the additional loss for pattern plating is approximately 0.42 dB, which is very close to the measured value for the similar MS line. For material type B (Figure 12) resembling results as for material type A are achieved. By fitting the insertion loss for four different lengths of the CBCPW lines, in the same manner as it was done for MS, the results for material type B can be seen in Figure 13. The frequency dependence is quite different compared to MS as it seems that additional losses occur already at low frequencies, albeit, losses do not increase as steeply as for MS.
Figure 11: Material type A CBCPW.
Figure 12: Material type B CBCPW.
Figure 13: Loss difference CBCPW.
Page 4 of 5
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Trouble in Your Tank: Understanding Interconnect Defects, Part 1
11/04/2025 | Michael Carano -- Column: Trouble in Your TankThis month, I’ll address interconnect defects (ICDs). While this defect continues to rear its ugly head, don’t despair. There are solutions, most of which center on process control and understanding the relationship of the chemistry, materials, and equipment. First, though, let’s discuss ICDs.
WestDev Announces Advanced Thermal Analysis Integration for Pulsonix PCB Design Suite
10/29/2025 | WestDev Ltd.Pulsonix, the industry-leading PCB design software from WestDev Ltd., announced a major enhancement to its design ecosystem: a direct interface between Pulsonix and ADAM Research's TRM (Thermal Risk Management) analysis software.
Designers Notebook: Power and Ground Distribution Basics
10/29/2025 | Vern Solberg -- Column: Designer's NotebookThe principal objectives to be established during the planning stage are to define the interrelationship between all component elements and confirm that there is sufficient surface area for placement, the space needed to ensure efficient circuit interconnect, and to accommodate adequate power and ground distribution.
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.
Nolan’s Notes: Tariffs, Technologies, and Optimization
10/01/2025 | Nolan Johnson -- Column: Nolan's NotesLast month, SMT007 Magazine spotlighted India, and boy, did we pick a good time to do so. Tariff and trade news involving India was breaking like a storm surge. The U.S. tariffs shifted India from one of the most favorable trade agreements to the least favorable. Electronics continue to be exempt for the time being, but lest you think that we’re free and clear because we manufacture electronics, steel and aluminum are specifically called out at the 50% tariff levels.