-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current Issue
The Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Characterization of PCB Material & Manufacturing Technology for High-Frequency
September 2, 2015 | E. Schlaffer, AT&S; and O. Huber, T. Faseth, and H. Arthaber, University of Technology, ViennaEstimated reading time: 15 minutes
Figure 14: Material type A SIW.
Figure 15: Material type B SIW.
Conclusion and Outlook
Structuring processes show different deviations of line width and trapezoidal degree of the cross-section, which also impairs the applied immersion nickel/gold overplating. In a comparison of RF-losses, the fabrication processes have demonstrated certain characteristics for the investigated transmission modes, MS, CBCPW, and SIW. MS has shown that for line lengths up to 5 mm there is no observable difference in terms of manufacturing process. Nonetheless, for longer lines a degradation of panel plating over pattern plating occurs, which increases quite linearly for the investigated materials. CBCPW exhibits slightly larger overall losses as MS. Due to the measurement results, the frequency dependence has shown a quite divergent behavior, as for low frequencies there is already a noticeable loss term present, however, with less overall increase over frequency than for MS. This behavior has been observed for both investigated materials. The SIW shows independent losses regarding the manufacturing process. For SIW, the losses can be assumed to be constant for frequencies above 65 GHz up to 100 GHz, for example, for material type A.
In a future work, these described observations will be extended to investigate the impact of different interconnection methods and top-end surface platings. Additionally, for the CBCPW further designs will be made and measurements will be carried out for different gap widths. This is done to try to evaluate when the discussed change of loss difference starts to emerge compared to the MS line structure.
References
1. B. Rosas, “Optimizing Test Boards for 50 GHz End-Launch Connectors: Grounded Coplanar Launches and Through Lines on 30 mil Rogers 4350 with Comparison to Microstrip,” Southwest Microwave Inc., Tempe, Arizona, 2007.
2. D. M. Pozar, “Microwave Engineering,” 3rd edition, Wiley, 2005.
3. J. Coonrod, B. Rautio, “Comparing Microstrip and CPW Performance,” Microwave Journal, July 2012.
Editor's Note: This article was originally published in the 2015 IPC Apex/Expo proceedings.
Page 5 of 5Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Trouble in Your Tank: Understanding Interconnect Defects, Part 1
11/04/2025 | Michael Carano -- Column: Trouble in Your TankThis month, I’ll address interconnect defects (ICDs). While this defect continues to rear its ugly head, don’t despair. There are solutions, most of which center on process control and understanding the relationship of the chemistry, materials, and equipment. First, though, let’s discuss ICDs.
WestDev Announces Advanced Thermal Analysis Integration for Pulsonix PCB Design Suite
10/29/2025 | WestDev Ltd.Pulsonix, the industry-leading PCB design software from WestDev Ltd., announced a major enhancement to its design ecosystem: a direct interface between Pulsonix and ADAM Research's TRM (Thermal Risk Management) analysis software.
Designers Notebook: Power and Ground Distribution Basics
10/29/2025 | Vern Solberg -- Column: Designer's NotebookThe principal objectives to be established during the planning stage are to define the interrelationship between all component elements and confirm that there is sufficient surface area for placement, the space needed to ensure efficient circuit interconnect, and to accommodate adequate power and ground distribution.
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.
Nolan’s Notes: Tariffs, Technologies, and Optimization
10/01/2025 | Nolan Johnson -- Column: Nolan's NotesLast month, SMT007 Magazine spotlighted India, and boy, did we pick a good time to do so. Tariff and trade news involving India was breaking like a storm surge. The U.S. tariffs shifted India from one of the most favorable trade agreements to the least favorable. Electronics continue to be exempt for the time being, but lest you think that we’re free and clear because we manufacture electronics, steel and aluminum are specifically called out at the 50% tariff levels.