-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Lightning Speed Laminates: Why Do Different Test Methods Yield Different Electrical Values?
January 20, 2016 | John Coonrod, Rogers CorporationEstimated reading time: 2 minutes
A variety of different test methods may be used for any one electrical concern. This article will discuss the issues related to determining the dielectric constant (Dk) and dissipation factor (Df or Tan-Delta). On a data sheet, a designer may see a Dk value for a material to be 3.5, as an example. Once the designer buys the material and performs necessary evaluations, it may be found that the Dk of the material is 3.8. In some applications this difference in Dk is probably not meaningful; however, for many RF and high-speed digital applications, this difference could be very significant. What is really interesting about this example is that the two Dk values may both be correct, depending on the test methods used.
Most laminates used in the PCB industry are anisotropic and this means that the electrical properties are not the same on all three axes of the material. Typically the thickness (z-axis) of the material will have a different Dk value than the x or y axes of the material. The reasons for this depend on what type of material is being considered.
The laminates used in the PCB industry are typically woven-glass reinforced, however there are notable exceptions. The glass reinforcement layer typically has a different Dk and Df than does the raw substrate of the laminate. The standard E-glass most often used in PCB laminates has a typical Dk value of about 6 and a dissipation factor of around 0.004. The common FR-4 laminates use relatively simple resin systems and the resin itself has a Dk that is around 3 and a Df of about 0.03. Different ratios of resin to glass will cause the laminate to have a Dk that is somewhere between the value of the resin and that of the glass. However, the glass-resin ratio impact on Dk is usually considered when evaluating the material through the thickness axis and if the x- or y-axis is evaluated, the Dk value may be very different than the z-axis result.
A large number of test methods are available to evaluate materials for Dk and Df. The methods that are most often used in the PCB laminate industry for making these measurements are typically tailored to evaluating materials in very large volume. Because of this issue, these test methods need to determine Dk and Df relatively fast, have good repeatability, and be used for quality control. A common test method used is the clamped stripline resonator, where a clamping fixture is used to form a stripline structure; the layer structure of a stripline is ground-signal-ground. This test method determines the Dk and Df of the material in the clamped fixture and more specifically, it is reporting these values related to the thickness axis of the material.
To read this entire article, which appeared in the December 2015 issue of The PCB Design Magazine, click here.
Suggested Items
NEOTech Significantly Improves Wire Bond Pull Test Process
11/25/2024 | NEOTechNEOTech, a leading provider of electronic manufacturing services (EMS), design engineering, and supply chain solutions in the high-tech industrial, medical device, and aerospace/defense markets, proudly announces a major advancement in its wire bond pull testing process, reducing manufacturing cycle time by more than 60% while maintaining industry-leading production yields of over 99.99%.
Real Time with... electronica 2024: SPEA's AI Integration—Innovations in Test Equipment
11/25/2024 | Real Time with... electronicaIn this interview from electronica 2024, Pete Starkey speaks with Andrea Furnari, VP of Electronic Test Products Business Unit for SPEA. The discussion revolves around AI integration in test equipment, trends in substrate materials, and SPEA's focus on R&D.
Winners of IPC Hand Soldering World Championship at electronica 2024 Announced
11/21/2024 | IPCIPC hosted its Hand Soldering World Championship in Munich, Germany, at electronica on 14-15 November 2024, welcoming 14 competitors from 13 companies and 12 countries worldwide. Skilled contestants competed to build an electronics assembly in accordance with IPC-A-610 Class 3 criteria, and were judged on the functionality of the assembly, compliance with the assembly process and overall product quality. The contestants were allowed a maximum of 60 minutes to complete the assembly.
Indie Semiconductor Extends Automotive Photonics Leadership with Advanced Optical Component Integration Capabilities
11/20/2024 | indie Semiconductorindie Semiconductor, an automotive solutions innovator, has extended its photonics offering with the addition of in-house photonics integration, packaging and system test capabilities.
Northrop Grumman Delivers Stand-in Attack Weapon Test Missile to the US Air Force
11/19/2024 | Northrop GrummanNorthrop Grumman Corporation has delivered the Stand-in Attack Weapon (SiAW) test missile, which is designed to verify that the launch aircraft can safely carry and separate the weapon.