Unconventional Superconductivity Near Absolute Zero Temperature
February 2, 2016 | Goethe University FrankfurtEstimated reading time: 2 minutes
Researchers at Goethe University have discovered an important mechanism for superconductivity in a metallic compound containing ytterbium, rhodium and silicon. As reported by Cornelius Krellner and his colleagues in the current edition of the Science journal, the underlying concept of the quantum-critical point has long been discussed as a possible mechanism for high-temperature superconductivity. Confirming this in YbRh2Si2 after 10 years of extensive research is thus a milestone in basic research. Due to its extremely low transition temperature of two-thousandths of a degree above absolute zero, the material will have no practical relevance.
"The ytterbium atoms are essential to the material properties because they are magnetic - and for a particularly fascinating reason," Prof. Krellner from the Institute for Physics at Goethe University explains. This is because the transition to the magnetized state (phase transition) takes place at such low temperatures that temperature-related movements of the tiny atomic magnets no longer play a role. This is what distinguishes this phase transition from all other known transitions, such as the freezing of water into ice. Quantum fluctuations dominate at temperatures near absolute zero (minus 273 degrees). These are so strong that nature attempts to take on alternative ordered fundamental states.
Superconductivity is a potential collective state which can arise at a quantum-critical point. "After we discovered it in YbRh2Si2, we were able to show that unconventional superconductivity is a general mechanism at a quantum-critical point," Krellner explains. The elaborate low-temperature measurements were taken in collaboration with the Walther-Meißner Institute for Low Temperature Research in Garching.
Cornelius Krellner studied YbRh2Si2 10 years ago while working towards his doctorate at the Max-Planck Institute for Chemical Physics of Solids. At the time, he was growing single crystals of the compound. The quality and size of these was essential to measuring the material properties in the first place. "We were all very enthusiastic when we saw the first indications of superconductivity, and I put all my efforts into growing even better and larger single crystals," remembers Krellner, who has headed the Crystal and Materials Laboratory at Goethe University since 2012. That it took so long after that to produce the final proof of unconventional superconductivity was due to the fact that the measurements are extremely time-consuming. Furthermore, it was necessary to study the superconductivity with different techniques in order to show that it really was a case of unconventional superconductivity.
Krellner and his team use a special method to grow the crystals. It prevents ytterbium from vaporizing at the required high temperatures of 1,500 degrees Celsius. "We are currently the only ones in Europe with the capability of producing single crystals of YbRh2Si2," Krellner is proud to tell us. Over the next few years, he and his colleagues want to study the magnetic order above the superconducting range. Physicists will also study the superconductivity itself in greater detail over the next few years - a task which will be enabled by the pure and large single crystals from AG Krellner.
Suggested Items
INEMI Call-for-Participation Webinar: BiSn-Based Low-Temperature Soldering Process and Reliability Project Phase 3b
04/28/2025 | iNEMIIn 2015, INEMI initiated the BiSn-Based Low-Temperature Soldering Process and Reliability Project to assess the feasibility of using low-temperature solders (LTS) in the SnBi system to address various technological, economic and ecological drivers for assembly of consumer computer electronic board products.
NUS Physicists Discover a Copper-free High-temperature Superconducting Oxide
03/28/2025 | PRNewswireProfessor Ariando and Dr Stephen Lin Er Chow from the National University of Singapore (NUS) Department of Physics have designed and synthesised a groundbreaking new material—a copper-free superconducting oxide—capable of superconducting at approximately 40 Kelvin (K), or about minus 233 degrees Celsius (deg C), under ambient pressure.
Indium to Showcase Proven EV Products and High-Reliability Alloys at Productronica China
03/26/2025 | Indium CorporationAs a global materials supplier and trusted partner in electric vehicle (EV) and e-Mobility manufacturing, Indium Corporation® is proud to showcase its high-reliability alloys and soldering solutions at Productronica China, March 26-28, in Shanghai, China.
YINCAE: UF 158UL Redefines Underfill for Large Chips
03/12/2025 | YINCAEYINCAE, a leading innovator in advanced materials solutions, today announced the launch of its groundbreaking underfill material, UF 158UL. This cutting-edge product is designed to meet the increasing demands of large format chips, offering unparalleled performance in room temperature flow, fast cure, and high reliability.
Indium to Showcase High-Reliability Solder Technology at IPC APEX EXPO 2025
03/05/2025 | Indium CorporationIndium Corporation®, a leading materials provider for the electronics assembly market, will feature its high-reliability solder solutions at IPC APEX EXPO 2025, taking place March 18-20 in Anaheim, California.