-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Enhancing Thermal Performance of CSP Integrated Circuits
February 24, 2016 | Nicholaus Smith, Integrated Device TechnologyEstimated reading time: 1 minute
In the portable electronics market, power management integrated circuits (PMICs) are increasingly found being packaged into ball grid array (BGA) and chip scale packages (CSP) for their lower material costs, improved electrical performance (no bond wire impedances), and smaller form factors. These advantages do not come without compromise: The silicon die of CSPs are no longer in direct contact with large heat-spreading thermal paddles (E-PADs) used for electrical and thermal conduction.
This is the primary performance trade-off; because the IC substrate is not in contact with an E-PAD there is no high-conductivity direct thermal connection from the substrate to the heat-spreading copper planes on the PCB. This article will discuss PCB level methods that will lower the operating temperature of CSP devices by examining methods to transfer heat from the source and transport it to the ambient environment by lowering thermal resistance of the CSP IC. There are usually multiple ways to enhance the performance while simultaneously lowering the operating temperature that can be incorporated into new boards or revisions of existing boards.
In order to meet size and weight requirements, constraints of portable electronic designs often force PCB designers to reduce the size of components and PCB real estate area. To meet these demands, the use of CSP packages to shrink the PCB area needed is a common change in designs. As a result of the reduction of total PCB area, the available options to move heat and route high-power PCB traces is also reduced. Furthermore, the thermal performance cannot be matched when a QFN is compared to an equivalent CSP package; therefore, it is imperative that the PCB is designed to optimize heat transfer from the CSP to the PCB, which in turn dissipates it into the atmosphere. The parameter measuring the heat conductivity is the junction-to-ambient thermal resistance specification, Theta-JA (ӨJA (˚C/W)).
To read this entire article, which appeared in the January issue of The PCB Design Magazine, click here.
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.