New Microwave Imaging Approach Opens a Nanoscale View on Processes in Liquids
March 29, 2016 | NISTEstimated reading time: 3 minutes
As important, the low-energy microwaves were too feeble to sever chemical bonds, heat, or interfere in other ways with the process they were being used to capture in images. In contrast, a scanning electron microscope that was used to record the same electroplating process at comparable levels of resolution yielded images showing delamination and other destructive effects of the electron beam.
The team reports similar success in using their AFM-microwave set-up to record images of yeast cells dispersed in water or glycerol. Levels of spatial resolution were comparable to those achieved with a scanning electron microscope, but again, were free of the damage caused by the electron beam.
In their experiments, the team used membranes—made either of silicon dioxide or silicon nitride—that ranged in thickness from 8 nanometers to 50 nanometers. They found, however, that the thinner the membrane the better the resolution—down to tens of nanometers—and the greater the probing depth—up to hundreds of nanometers. “These numbers can be improved further with tuning and development of better electronics,” Kolmakov said.
In addition to studying processes in reactive, toxic, or radioactive environments, the researchers suggest that their microwave-imaging approach might be integrated into “lab-on-a-chip” fluidic devices, where it can be used to sample liquids and gases.
The research was performed at NIST’s Center for Nanoscale Science and Technology and at the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility.
Page 2 of 2Suggested Items
I-Connect007’s Editor’s Choice: Five Must-Reads for the Week
07/04/2025 | Marcy LaRont, I-Connect007For our industry, we have seen several bullish market announcements over the past few weeks, including one this week by IDC on the massive growth in the global server market. We’re also closely watching global trade and nearshoring. One good example of successful nearshoring is Rehm Thermal Systems, which celebrates its 10th anniversary in Mexico and the official opening of its new building in Guadalajara.
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Orbel Corporation Integrates Schmoll Direct Imaging
06/04/2025 | Schmoll AmericaOrbel Corporation in Easton, PA, proudly becomes the first PCM facility in the U.S. equipped with Schmoll’s MDI Direct Imaging system. This installation empowers Orbel to support customers with greater precision and quality.
Key Insights on Photoresist for Defect Reduction
05/21/2025 | I-Connect007 Editorial TeamIn PCB manufacturing, understanding the intricacies of the photoresist process is crucial for achieving high-quality results. Industry experts Josh Krick, a technical service engineer at IEC, and Tim Blair, a PCB imaging specialist at Tim Blair LLC, share their knowledge on the essential stages of photoresist application, highlight critical advancements in materials, and discuss common defects encountered during production. They share best practices and innovative solutions to enhance the manufacturing process, reduce defects, and ensure efficiency and reliability in high-tech applications.