-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueDesigning Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Beyond Design: The Case for Artificial Intelligence in EDA Tools
June 28, 2016 | Barry Olney, In-Circuit Design Pty LtdEstimated reading time: 2 minutes

I-Connect007 Editor Andy Shaughnessy reported that the keynote speaker at the IPC APEX EXPO Design Forum was Dean Parker, a former PCB designer at Shure who is now a CAD manager at Google X. Parker is involved in the development of autonomous vehicles and all sorts of other great ideas at Google X. According to Andy, Parker told the crowd, among other things, that EDA tool vendors need to trash all their old 1990s code and start over, this time with artificial intelligence.
There has been a lot of activity in the field of AI recently, with such developments as voice recognition, unmanned autonomous vehicles and data mining to list a few. But how could AI possibly influence the PCB design process? This month, I will take a look at the endless possibilities.
So much time is wasted on reproducing the same thing over and over again on each layout. Current EDA tools, with all their bells and whistles, are still very limited in automation processes and mostly rely on the skills and foresight of the engineer and PCB designer to drive the software through all the hoops. Instead, EDA tools need to predict what the designer is trying to do, then look at previous designs to suggest alternatives and auto-complete the design where possible. AI is a system that perceives its environment and takes actions to maximize its chances of success.
Automating many of the tedious steps in setting up the initial database would be a good start. A standard form factor could be used to establish the initial layout environment ensuring that designs are compatible across multiple generations of technology. Although some PCB layout tools allow the designer to load a standard set of predefined startup configuration files, there is still too much manual intervention required. The PCB database could predict the fundamental design rules and via stack requirements sourced from previous experience.
Predictive text, which we all use every day on our cell phones, could provide self-evident naming conventions for supplier part numbers and database fields, greatly speeding up the design definition. Busses and interfaces could be analyzed and categorized with naming conventions interpreted from the chip pin name assignments, eliminating much of the monotonous schematic capture process. IC power pins could have powers supplies assigned based on datasheet requirements. And a starter set of decoupling capacitors, added to each power pin, could kick off the PDN analysis based on previous capacitor availability and parameter selections.
A selection of predefined library components could be offered, based on an initial bill of materials, and pre-placed on the schematic predicting the designer’s requirements. IBIS models could be automatically assigned to each chip, based on the part number and all the interconnecting transmission lines identified. The IBIS model’s source and load impedances could be extracted to assign the required impedance and terminations to each individual transmission line.
Also from this, the board stackup could be created based on previous designs, with similar technology, selecting dielectric materials, from a well maintained library, sourced from the preferred fabricator availability, dielectric loss and bandwidth requirements. Data and address busses together with clock/strobe different pairs, defined at the schematic entry level, could be assigned to certain layers in order to minimize crosstalk, electromagnetic emissions and return path loops. Power plane shapes could be automatically defined based on component placement and on the pins that need to be connected, allowing for DC drop and maximum current supply.
To read this entire article, which appeared in the May 2016 issue of The PCB Design Magazine, click here.
Suggested Items
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
The Right Blend: Mixed Wireless Technologies
05/08/2025 | Kirsten Zima, Siemens EDAA common trend recently is to employ as many radios as possible on a single PCB. With the increase of wireless standards and the downscaling of PCB size, it can be difficult to know what the most critical design parameters are to focus on. In this article, we’ll discuss the most important considerations to make when designing with mixed wireless technologies, such as Bluetooth, GPS, and Wi-Fi, on a single PCB. These considerations include antennas, frequencies, FCC compliance, shielding, and layout with and without transition vias.
ZESTRON Announces New Reliability and Solutions Service for Risk Assessment & Mitigation of Electronic Assemblies
05/06/2025 | ZESTRONZESTRON, the leading global provider of high-precision cleaning products, services, and training solutions, is thrilled to introduce its new Reliability and Solutions (R&S) service.
PCB East Continues to Expand
05/06/2025 | Andy Shaughnessy, Design007 MagazineIt was a perfect week for a conference and trade show in metropolitan Boston, with high temperatures in the 70s. PCB East took place at the Boxboro Regency Hotel and Conference Center April 29–May 2, with the expo on April 30. PCB East has been expanding since its relaunch a few years ago, with conference and show attendance rising each year.