-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Beyond Design: The Case for Artificial Intelligence in EDA Tools
June 28, 2016 | Barry Olney, In-Circuit Design Pty LtdEstimated reading time: 2 minutes
I-Connect007 Editor Andy Shaughnessy reported that the keynote speaker at the IPC APEX EXPO Design Forum was Dean Parker, a former PCB designer at Shure who is now a CAD manager at Google X. Parker is involved in the development of autonomous vehicles and all sorts of other great ideas at Google X. According to Andy, Parker told the crowd, among other things, that EDA tool vendors need to trash all their old 1990s code and start over, this time with artificial intelligence.
There has been a lot of activity in the field of AI recently, with such developments as voice recognition, unmanned autonomous vehicles and data mining to list a few. But how could AI possibly influence the PCB design process? This month, I will take a look at the endless possibilities.
So much time is wasted on reproducing the same thing over and over again on each layout. Current EDA tools, with all their bells and whistles, are still very limited in automation processes and mostly rely on the skills and foresight of the engineer and PCB designer to drive the software through all the hoops. Instead, EDA tools need to predict what the designer is trying to do, then look at previous designs to suggest alternatives and auto-complete the design where possible. AI is a system that perceives its environment and takes actions to maximize its chances of success.
Automating many of the tedious steps in setting up the initial database would be a good start. A standard form factor could be used to establish the initial layout environment ensuring that designs are compatible across multiple generations of technology. Although some PCB layout tools allow the designer to load a standard set of predefined startup configuration files, there is still too much manual intervention required. The PCB database could predict the fundamental design rules and via stack requirements sourced from previous experience.
Predictive text, which we all use every day on our cell phones, could provide self-evident naming conventions for supplier part numbers and database fields, greatly speeding up the design definition. Busses and interfaces could be analyzed and categorized with naming conventions interpreted from the chip pin name assignments, eliminating much of the monotonous schematic capture process. IC power pins could have powers supplies assigned based on datasheet requirements. And a starter set of decoupling capacitors, added to each power pin, could kick off the PDN analysis based on previous capacitor availability and parameter selections.
A selection of predefined library components could be offered, based on an initial bill of materials, and pre-placed on the schematic predicting the designer’s requirements. IBIS models could be automatically assigned to each chip, based on the part number and all the interconnecting transmission lines identified. The IBIS model’s source and load impedances could be extracted to assign the required impedance and terminations to each individual transmission line.
Also from this, the board stackup could be created based on previous designs, with similar technology, selecting dielectric materials, from a well maintained library, sourced from the preferred fabricator availability, dielectric loss and bandwidth requirements. Data and address busses together with clock/strobe different pairs, defined at the schematic entry level, could be assigned to certain layers in order to minimize crosstalk, electromagnetic emissions and return path loops. Power plane shapes could be automatically defined based on component placement and on the pins that need to be connected, allowing for DC drop and maximum current supply.
To read this entire article, which appeared in the May 2016 issue of The PCB Design Magazine, click here.
Suggested Items
PCB Layout Rules of Thumb for Consideration
11/25/2024 | Patrick Davis, Cadence Design SystemsJust because a “rule of thumb” is usually based on experience instead of precise facts doesn’t negate its value. For instance, when I told my kids that a good rule of thumb was not to back-talk to their mother, they discovered very quickly how accurate my advice was once they crossed that line. There are a lot of rules of thumb that we rely on daily, including those that apply to PCB design.
HPC Customer Engages Sondrel for High End Chip Design
11/25/2024 | SondrelSondrel, a leading provider of ultra-complex custom chips, has announced that it has started front end, RTL design and verification work on a high-performance computing (HPC) chip project for a major new customer.
Rules of Thumb for PCB Layout
11/21/2024 | Andy Shaughnessy, I-Connect007The dictionary defines a “rule of thumb” as “a broadly accurate guide or principle, based on experience or practice rather than theory.” Rules of thumb are often the foundation of a PCB designer’s thought process when tackling a layout. Ultimately, a product spec or design guideline will provide the detailed design guidance, but rules of thumb can help to provide the general guidance that will help to streamline the layout process and avoid design or manufacturing issues.
PCB Design Software Market Expected to Hit $9.2B by 2031
11/21/2024 | openPRThis report provides an overview of the PCB design software market, detailing key market drivers, challenges, technological advancements, regional dynamics, and future trends. With a projected compound annual growth rate (CAGR) of 13.4% from 2024 to 2031, the market is expected to grow from $3.9 billion in 2024 to $9.2 billion by 2031.
KYZEN to Spotlight KYZEN E5631, AQUANOX A4618 and Process Control at SMTA Silicon Valley Expo and Tech Forum
11/21/2024 | KYZEN'KYZEN, the global leader in innovative environmentally friendly cleaning chemistries, will exhibit at the SMTA Silicon Valley Expo & Tech Forum on Thursday, December 5, 2024 at the Fremont Marriott Silicon Valley in Fremont, CA.