-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueCreating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Happy’s Essential Skills: Computer-Aided-Manufacturing, Part 1—Automation Protocols
September 14, 2016 | Happy HoldenEstimated reading time: 19 minutes
Figure 8: Equipment operation and GEM capability for industrial automation. (Source: HP Journal, July 1985).
Meaning
Characteristic for industrial production in an Industry 4.0 environment are the strong customization of products under the conditions of highly flexibilized (mass-) production. The required automation technology is improved by the introduction of methods of self-optimization, self-configuration, Self-diagnosis, cognition and intelligent support of workers in their increasingly complex work
Effects
Current activities addressed the prevalence of the Internet of Things in manufacturing and the consequent technology-driven changes which promise to trigger a new industrial revolution. At Bosch, and generally in Germany, this phenomenon is referred to as Industry 4.0. The basic principle of Industry 4.0 is that by connecting machines, work pieces and systems, businesses are creating intelligent networks along the entire value chain that can control each other autonomously. Some examples for Industry 4.0 are machines which can predict failures and trigger maintenance processes autonomously or self-organized logistics which react to unexpected changes in production.
There are differences between a typical traditional factory and an Industry 4.0 factory. In the current industry environment, providing high-end quality service or product with the least cost is the key to success and industrial factories are trying to achieve as much performance as possible to increase their profit as well as their reputation. In this way, various data sources are available to provide worthwhile information about different aspects of the factory. In this stage, the utilization of data for understanding current operating conditions and detecting faults and failures is an important topic to research. e.g. in production, there are various commercial tools available to provide this protocol.
Wikipedia further explains what Industry 4.0 includes[11]:
Overall Equipment Effectiveness (OEE) information to factory management in order to highlight the root causes of problems and possible faults in the system. In contrast, in an Industry 4.0 factory, in addition to condition monitoring and fault diagnosis, components and systems are able to gain self-awareness and self-predictiveness, which will provide management with more insight on the status of the factory. Furthermore, peer-to-peer comparison and fusion of health information from various components provides a precise health prediction in component and system levels and force factory management to trigger required maintenance at the best possible time to reach just-in time maintenance and gain near zero downtime.
Challenges which have been identifiedinclude:
- IT security issues, which are greatly aggravated by the inherent need to open up those previously closed production shops
- Reliability and stability needed for critical machine-to-machine communication (M2M), including very short and stable latency times
- Need to maintain the integrity of production processes
- Need to avoid any IT snags, those would cause expensive production outages
- Need to protect industrial knowhow (contained also in the control files for the industrial automation gear)
- Lack of adequate skill-sets to expedite the march towards fourth industrial revolution
- Threat of redundancy of the corporate IT department
- General reluctance to change by stakeholders
Next time, in Computer Aided Manufacturing Part 2, I will offer automation examples from personal projects I have been involved with.
References
- Industry 4.0 Smart Manufacturing for the Future
- Introduction to Serial Communications, TalTech Instrumental Software Solutions.
- IEEE Standard Codes
- IEEE-488, Wikipedia.
- Message Automation & Protocol Simulation (MAPS™), GL Communications, Inc.
- “Semiconductor Productivity at HP,” HP Journal, July 1985.
- SEMI Standard E30, General Equipment Model.
- IPC Status of Standardization; IPC Committee Home Pages
- Smart IoT Technology for Machine Condition Monitoring
- Hermann, M., Pentek, T., Design Principles for Industrie 4.0 Scenarios, Working Paper No. 01/2015, technische universitat-Dortmund, 2015.
- Industry_4.0, Wikipedia.
Happy Holden has worked in printed circuit technology since 1970 with Hewlett-Packard, NanYa/Westwood, Merix, Foxconn and Gentex. He is the co-editor, with Clyde Coombs, of the recently published Printed Circuit Handbook, 7th Ed. To contact Holden, click here.
Page 5 of 5
Suggested Items
DELO Thrives Amid Global Economic Uncertainty
05/09/2025 | DELOGermany/Sudbury, MA, May 9, 2025 | DELO, one of the world’s leading manufacturers of high-tech adhesives as well as dispensing and curing equipment, has announced that it has achieved over €245 million ($265 million) in revenue during the 2024/2025 fiscal year (ending March 31, 2025).
TTM Technologies Announces Retirement of Founder and Board Member, Kent Alder
05/09/2025 | Globe NewswireTTM Technologies, Inc., a leading global manufacturer of technology solutions including mission systems, radio frequency (RF) components and RF microwave/microelectronic assemblies, quick-turn and technologically advanced printed circuit boards (PCB), announced the retirement of its founder, former CEO and long-serving board member, Kent Alder.
IPC Strengthens Global Focus with Promotion of Sanjay Huprikar to Chief Global Officer
05/08/2025 | IPCIPC, the global electronics association, announces the promotion of Sanjay Huprikar to chief global officer. This newly created position reflects the association’s forward-looking strategy and industry needs to strengthen the electronics supply chain.
Jenoptik Fab Officially Inaugurated in Dresden
05/07/2025 | JenoptikJenoptik manufactures micro-optics for the semiconductor equipment industry in a state-of-the-art production environment.
Join the Conversation: MESI 4.0 Summit 2025 Brings Manufacturing Experts to Porto
05/06/2025 | Critical ManufacturingThe MES and Industry 4.0 International Summit 2025 (MESI 4.0 Summit), hosted by Critical Manufacturing, will bring together manufacturing leaders, technology experts, and industry pioneers in Porto on June 12-13, offering a unique platform to explore practical strategies for digital transformation and smart manufacturing.