-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSoldering Technologies
Soldering is the heartbeat of assembly, and new developments are taking place to match the rest of the innovation in electronics. There are tried-and-true technologies for soldering. But new challenges in packaging, materials, and sustainability may be putting this key step in flux.
The Rise of Data
Analytics is a given in this industry, but the threshold is changing. If you think you're too small to invest in analytics, you may need to reconsider. So how do you do analytics better? What are the new tools, and how do you get started?
Counterfeit Concerns
The distribution of counterfeit parts has become much more sophisticated in the past decade, and there's no reason to believe that trend is going to be stopping any time soon. What might crop up in the near future?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Approaches to Overcome Nodules and Scratches on Wire-Bondable Plating on PCBs
July 17, 2019 | Young K. Song and Vanja Bukva, Teledyne Dalsa Inc., and Ryan Wong, FTG CircuitsEstimated reading time: 4 minutes
Abstract
Initially adopted internal specifications for acceptance of printed circuit boards (PCBs) used for wire bonding was that there were no nodules or scratches allowed on the wirebond pads when inspected under 20X magnification. The nodules and scratches were not defined by measurable dimensions and were considered to be unacceptable if there was any sign of a visual blemish on wire-bondable features. Analysis of the yield at a PCB manufacturer monitored monthly for over two years indicated that the target yield could not be achieved, and the main reasons for yield loss were due to nodules and scratches on the wirebonding pads.
The PCB manufacturer attempted to eliminate nodules and scratches. First, a light-scrubbing step was added after electroless copper plating to remove any co-deposited fine particles that acted as a seed for nodules at the time of copper plating. Then, the electrolytic copper plating tank was emptied, fully cleaned, and filtered to eliminate the possibility of co-deposited particles in the electroplating process. Both actions greatly reduced the density of the nodules but did not fully eliminate them. Even though there was only one nodule on any wire-bonding pad, the board was still considered a reject. To reduce scratches on wirebonding pads, the PCB manufacturer utilized foam trays after routing the boards so that they did not make direct contact with other boards. This action significantly reduced the scratches on wire-bonding pads, even though some isolated scratches still appeared from time to time, which caused the boards to be rejected. Even with these significant improvements, the target yield remained unachievable.
Another approach was then taken to consider if wire bonding could be successfully performed over nodules and scratches and if there was a dimensional threshold where wire bonding could be successful. A gold ball bonding process called either stand-off-stitch bonding (SSB) or ball-stitch-on-ball bonding (BSOB) was used to determine the effects of nodules and scratches on wire bonds. The dimension of nodules, including height, and the size of scratches, including width, were measured before wire bonding. Wire bonding was then performed directly on various sizes of nodules and scratches on the bonding pad, and the evaluation of wire bonds was conducted using wire pull tests before and after reliability testing. Based on the results of the wire-bonding evaluation, the internal specification for nodules and scratches for wirebondable PCBs was modified to allow nodules and scratches with a certain height and a width limitation compared to initially adopted internal specifications of no nodules and no scratches. Such an approach resulted in improved yield at the PCB manufacturer.
Introduction
The development of the chip-on-board (COB) type of image sensors has significantly increased in the last few years to accommodate an increasing demand for low-cost, high-performance industrial inspection cameras. Wire bonding is the most commonly used technology for making the electrical interconnection between a silicon image sensor and its substrate during image sensor fabrication. Therefore, wire bonding directly on the PCB surface is inevitable for COB-type image sensor fabrication.
IPC-A-600J section 2.7.1.3—surface plating, wire-bond pads [1]—states, “Wire-bond pads are free of surface nodules, roughness, electrical test witness marks or scratches that exceed 0.8 mm (32 min) RMS (root-mean-square) in the pristine area in accordance with an applicable test method AABUS.” Since the tolerance of surface nodules (<0.8 mm RMS) in IPC-A-600J for wire bonding pads is not easily measurable and may not properly reflect single nodules and shallow scratches, the initially adopted specification for wire bonding pads as a user was defined to be free of surface nodules and scratches.
Figure 1: Average yield loss from multiple wire-bonding PCB products.
Therefore, a board was considered a reject if a nodule or a scratch was visible in the pristine area of the wire-bond at 20X magnification. If in any doubt, one could use 40X magnification for inspection to clarify pass/fail. However, in reality, it was difficult to achieve a wire-bonding surface in specification without nodules or scratches, resulting in low yield at the PCB manufacturer. In particular, PCB products designed with a center cut-out slot close to bonding pads were prone to significant yield loss due to nodules.
Yield review with the manufacturer and the analysis of causes for rejects using Pareto charts pointed out that two main reasons for PCB rejects were due to nodules and scratches on the wire-bonding surface. Yield had been reviewed on a monthly basis for 28 months, and the major yield losses continued to be due to nodules and scratches on the wire-bonding surface during the period. Figure 1 shows the average yield loss per month for wire-bonding boards due to nodules and scratches. The average yield losses from multiple PCB products due to nodules and scratches for wire bonding boards were in the range of 4–41% and 2–30%, respectively, during the period.
It is worth noting that the data in Figure 1 may not necessarily provide the picture of actual average yield loss due to nodules and scratches. When any defect—either nodule or scratch—was first found during an inspection of a board, the reason for rejection was recorded and further inspection of that board was not pursued since the board was already determined to be a reject. For example, the manufacturer recorded a 39% yield loss for nodules and none for scratches in Period 3. However, it may not mean that there were no scratches on those rejected boards since those boards had not been inspected further for scratches after nodules were first observed.
To read the full article, which appeared in the July 2019 issue of SMT007 Magazine, click here.
Suggested Items
OKI Develops PCB Technology with Stepped Copper Coin Insertion to Achieve 55 Times Better Heat Dissipation in Outer Space
12/12/2024 | BUSINESS WIREThe OKI Group printed circuit board (PCB) business company OKI Circuit Technology has successfully developed multi-layer PCB technology with stepped copper coin insertion to achieve 55 times better heat dissipation compared to conventional PCB.
Fresh PCB Concepts: PCB Plating Process Overview
12/12/2024 | Team NCAB -- Column: Fresh PCB ConceptsIn this installment of Fresh PCB Concepts, Mike Marshall takes the helm stating: PCBs have been the platform for the interconnection of electronic components for decades. Because of process costs and other constraints, such as mechanical properties or size limitations of the alternatives, PCBs will remain the standard low-cost interconnection technology. Rapidly increasing performance and functionality requirements of wireless and high-speed devices have challenged the development and implementation of new manufacturing solutions.
Growth Unfolds: The First of STARTEAM’s Trio of Factories Set to Expand
12/05/2024 | STARTEAM GLOBALSTARTEAM is thrilled to share news of our upcoming 3-step expansion at JST, with each step adding 50,000m² per month which began on May 27, 2024. This carefully planned extension is designed to significantly increase our production capacity and expand our talented team. Currently, our production space covers 30,000m². Through this expansion, we are setting our sights on incrementally increasing our capacity from 70,000m²/month to a remarkable 130,000m²/month.
Connect the Dots: Designing for Reality: Strip-Etch-Strip
12/05/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we focused on pattern plating. At this point, we are close to completing our boards and ready for the strip-etch-strip (SES) process. By this stage of the manufacturing process, we have laminated all the internal layers together, drilled the through-holes, applied the image to the external layers through photoresist, plated the copper in those channels to beef up the copper thickness for traces, pads, and through-holes, added a layer of electrolytic tin over the top of that copper to protect it during subsequent stages of production.
Fresh PCB Concepts: PCB Design Essentials for Electric Vehicle Charging
11/27/2024 | Team NCAB -- Column: Fresh PCB ConceptsElectric vehicles (EVs), powered by electricity rather than fossil fuels, are transforming transportation and reducing environmental impacts. But what good is an EV if it can't be easily charged? In this month's column, Ramon Roche dives into the role of printed circuit boards (PCBs) in electric vehicle charging (EVC)—and the design considerations.