-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueDesigning Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
RF and Microwave: No Black Magic
March 15, 2022 | Andy Shaughnessy, Design007 MagazineEstimated reading time: 5 minutes

I caught up with Ben Jordan after his class on RF and microwave at IPC APEX EXPO. Ben, an electrical engineer, explained how sitting through previous classes on this topic led to him developing his own class. “I wanted to bridge the gap,” he says, “with a class that makes the material approachable and teaches the intuitive nature of fields and waves and how they work in circuit boards.”
Andy Shaughnessy: Ben, I caught your class on RF and microwave. But you also have your own business, correct?
Ben Jordan: Yes, I do.
Shaughnessy: That’s great. Hanging out your own shingle and all that.
Jordan: I’ve actually had it as a side gig for about 10 years but didn’t do much with it. It started when, 11 years ago, I wrote an article for a hobbyist magazine called Elektor Electronics on power supply design. I wanted to release it and suddenly people wanted to buy a kit from me. Hobbyists from Europe were sending me orders, so I had to quickly ramp up and produce little electronic kits. I’m not doing that now because that’s not scalable, but I needed a business entity.
Shaughnessy: That’s very cool.
Jordan: I’ve been doing a little bit here and there, and whenever I train or teach at IPC, like this week, I can be paid through my business. But now I’m looking at making a change, hanging out my shingle as you said, and pursuing the business that will be more financially stable as well as give me time to pursue some of my more creative interests, like music.
Shaughnessy: Yes, exactly. So, tell me a little about the class I attended and some of the challenges you wanted to address with that.
Jordan: So, I’ve sat in on some great RF microwave classes in the past. Rick Hartley has a fantastic one; it’s dense. They’re all good. I studied electrical engineering and I’m a qualified engineer originally, but I never professionally did RF and microwave. I wanted to start doing it because everything is connected wirelessly now. I went back to all my old engineering texts to review the material I studied in university. There’s a lot of math and a lot of theory, but what I discovered is that none of it talked about printed circuit boards beyond, “This is a stripline and this is a microstrip and this is how you determine the impedance.”
I realized something was missing in our community. There are many PCB designers who may not even be degree qualified and believe they can’t do RF and microwave board design because they’ve never been trained in microwave engineering. I would often hear that people see it as some kind of black magic, like, “Those are the wizards in the office down in the corner.” I wanted to bridge the gap with a class that makes the material approachable and teaches the intuitive nature of fields and waves and how they work in circuit boards. How do they work? What’s the effect on the materials and how you actually design the shapes and decide what size they should be for things like filters and impedance matching of circuits?
That grew into another class I developed for antenna design; we have a lot of animations showing the right visualization of how the different types of circuit board antennas work so people can understand them and then dimension them correctly for the target purpose.
Shaughnessy: A lot of it is counterintuitive to a typical design. A PCB designer doesn’t want things to be an antenna, but in RF you do.
Jordan: Some you do and some you don’t. By learning antenna theory, you can also learn how to be a better signal integrity aware digital designer as well because exactly the same principles apply. For example, at the end of my class yesterday, I was showing a design of a slot antenna on a printed circuit board. It’s essentially an impedance-controlled trace with a very specially-sized notch on one side of the board in a plane; that’s an opening. On the other side, you have the micro strip that crosses over the notch with a precise length. But what happens at the frequency of resonance is that it causes very good radiation. It’s a great antenna.
Just at the moment I was showing this, Insulectro’s Mike Creeden stuck his head into the classroom, raised his hand, and said, “This is also why you don’t cross ground planes in a digital design. You’ve just created an antenna without realizing it.” So, yeah, it’s very good. I find that the attendance of my subject is usually pretty good, even in these times when a lot of people still aren’t coming to shows yet.
Shaughnessy: What advice would you give to someone who’s getting into wireless and having to deal with the audio, the analog. You must deal with analog digital, mixed signal, and all this good stuff.
Jordan: There are books of advice, but I would just not to be overwhelmed and don’t keep telling yourself it’s black magic. You can do it if you think you can. Just start on the road, watch the RF and microwave series I did a few years ago as an intro.
Shaughnessy: Is that on YouTube?
Jordan: It was on the Altium YouTube channel because I was working for Altium at that time. I’m not anymore, obviously, but start there. Because we talk about materials, the basic principles and the mathematics are not hard. I’m not trying to teach people how to write their own software to do finite difference time domain or FEM.
There are plenty of software companies that have really dialed that in. There are even a lot of free open-source tools, which I talk about in my class, that do it well. And of course, moving forward with my own company, I will be focusing on turning this into a more staged, in-depth course. There will be more actual design examples so that you can build something yourself, have something that works, and understand how it’s working. That’s my goal for this year.
Shaughnessy: I like your advice: Don’t be overwhelmed by it.
Jordan: That’s right, just start. The journey of a thousand miles starts with one step.
Shaughnessy: Thank you for talking with me.
Jordan: Thank you, Andy. Good talking to you again.
Suggested Items
Siemens, TSMC Extend Collaboration to Drive Semiconductor Design Innovation
04/25/2025 | SiemensSiemens Digital Industries Software announced that the company has deepened longstanding collaboration with TSMC to drive innovation in semiconductor design and integration, enabling mutual customers to tackle the challenges of next-generation technologies.
Ansys Strengthens Collaboration with TSMC on Advanced Node Processes Certification and 3D-IC Multiphysics Design Solutions
04/24/2025 | PRNewswireThrough continued collaboration with TSMC, Ansys announced enhanced AI-assisted workflows for radio frequency (RF) design migration and photonic integrated circuits (PICs), and new certifications for its semiconductor solutions. Together,
Autodesk Donates $4.3 Million to Cornell University to Prepare students for an AI-powered future
04/24/2025 |Autodesk announced a $4.3 million gift to Cornell University’s College of Engineering and College of Architecture, Art, and Planning (AAP) to help prepare students for the future of work in an increasingly AI-driven world. The investment will fund a new Autodesk Cornell Engineering Design and Make Space in Upson Hall.
Driving Sustainability in PCB Design
04/24/2025 | Marcy LaRont, I-Connect007Filbert (Fil) Arzola is an electrical engineer at Raytheon. He’s smart, entertaining, and passionate about PCB design. As it turns out, he’s also passionate about “Mother Earth,” as he calls her. Born and raised in Southern California, he freely admits that he turns the water off when he brushes his teeth and yells at his brother for throwing batteries in the garbage. But when looking at the issue of sustainability and PCB design, he urges his audiences to ponder what sustainability looks like. Can PCB designers, he asks, make any impact on sustainability at all?
Real Time with... IPC APEX EXPO: Silicon Geometry's Signal Integrity Impact on PCBs
04/24/2025 | Marcy LaRont, I-Connect007At IPC APEX EXPO 2025, Kris Moyer addressed the importance of understanding the impact of silicon geometry reduction on signal integrity and PCB performance. Kris says signal integrity considerations are necessary for so many designs today, regardless of clock frequency. He discusses valuable insights from attendees regarding embedded resistor technology and the effects of radiation on smaller silicon features in aerospace applications.