-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueSignal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
Showing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Designing PCBs With Additive Traces
April 28, 2022 | Tomas Chester, Chester Electronic DesignEstimated reading time: 2 minutes

Advances in technology have been clear to see within the component packaging industry, as the ball grid array (BGA) package sizes reduce from 1.0 mm pitch to 0.8 mm, 0.4 mm, and even beyond. However, while these improvements have occurred with component packages, it has become increasingly more difficult to break out and route the dense circuitry associated with these parts. Currently, the high-density interconnect (HDI) method typically used for the breakout of such parts has been to create the smallest possible subtractive-etched traces with microvias to allow for connections and escapes on the innerlayers of your PCB.
Now there are new fabrication processes that change how we can approach some of these layout difficulties. Additive and semi-additive construction now allows us to get down below 0.075 mm trace and gap sizes easily and reliably, however, utilizing it brings its own series of challenges to the table. Before designers and engineers can start to use this technology, we need to understand the difference between the standard subtractive fabrication method and these new additive fabrication methods, as well as their respective design requirements for trace impedance, and the signal integrity impact from routing traces closer together.
Subtractive vs. Additive
Let's start by taking a brief high-level view of the different fabrication processes. With subtractive fabrication, our PCBs start with a base layer of copper of some thickness already laminated to the substrate. Then copper is electrolessly plated onto the board’s outer layers, including inside the drill and via holes. A design image is then applied, an etch resist plated onto the exposed traces and holes, after which etching will occur. This is our subtractive step, where we remove the copper in areas where there was no image applied. This is also the limiting step in the subtractive fabrication process, because as we etch vertically down through the copper, the etching agents also remove copper in a horizontal direction, under the applied design image. The result of this process is a final copper trace cross-section with a trapezoidal shape. The critical concern here is that if the trace height is half as tall as its width, likely the etching process will remove the trace.
With additive fabrication, the process can be imagined as similar to 3D printing. The PCB starts with no copper on the laminate material and is instead “built” up on top of a thin seed layer of electroless copper, or on top of a thin laminated copper foil. This not only allows for trace and gap sizes down to 0.010 mm; it also creates a trace cross-section that has a rectangular shape.
To read this entire article, which appeared in the April 2022 issue of Design007 Magazine, click here.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.