-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssuePartial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
Cost Drivers
In this month’s issue of Design007 Magazine, our expert contributors explain the impact of cost drivers on PCB designs and the need to consider a design budget. They discuss the myriad design cycle cost adders—hidden and not so hidden—and ways to add value.
- Articles
- Columns
Search Console
- Links
- Events
||| MENU - design007 Magazine
DFM 101: Final Finishes—OSP
March 9, 2023 | Anaya Vardya, American Standard CircuitsEstimated reading time: 1 minute
Introduction
One of the biggest challenges facing PCB designers is not understanding the cost drivers in the PCB manufacturing process. The next final finishes to discuss in this series is OSP. As with all surface finishes there are pros and cons with the decision of which to use. It is a combination of application, cost, and the properties of the finish. OSP is RoHS-compliant as there is zero lead content in the finish.
Final Finishes
OSP (Organic Solderability Preservative)
OSP is a thin organic coating, typically 5.9 to 11.8 µin [0.15 to 0.30 µm] thick, designed to prevent the oxidation of copper to maintain solderability over an extended period. Compared with other surface finish technologies, OSP is somewhat different. It uses a chemical process to produce an organic film on the bare copper surface which acts as a barrier to copper oxidation. OSP is organic, not metallic, and its cost is lower than most surface treatment technologies.
As with all surface finishes, the primary purpose is to protect the solderable surfaces on the PCB from oxidation and to aid in assembly soldering. This process coats a very thin coating of an organic material that inhibits copper oxidation. It is so thin that it is nearly impossible to see and measure. The organic material is removed by the assembly flux. Boards that have been OSP coated will have bright copper pad coloration. OSP is specially designed for mixed metal applications, such as electroless nickel immersion gold (ENIG). The OSP selectively deposits on copper while leaving gold connectors or metallic heat sinks free of contamination.
There are a couple of common OSP finishes widely used in the industry:
ENTEK CU-56: This is used for assemblies that will only go through a single reflow process. This finish is not being utilized much anymore because of the use of mixed technology boards (SMT and through-hole).
ENTEK CU-106A: This is the most prevalent version primarily due to the ability to survive multiple thermal assembly operations. PCBs that have multiple surface finishes can use the CU-106A(X) finish.
To read this entire article, which appeared in the February 2023 issue of Design007 Magazine, click here.
Suggested Items
Trouble in Your Tank: Interconnect Defect—The Three Degrees of Separation
10/01/2024 | Michael Carano -- Column: Trouble in Your TankIt has been well documented that, with a very expensive and complex printed circuit board, thermal and mechanical excursions often find weaknesses. A lack of robustness and poor process control often leads to the exploitation of those weaknesses. An interconnect defect (ICD) often goes undetected until the printed circuit board reaches the final assembly stage or undergoes multiple thermal cycles, including interconnect stress tests or thermal shock. It is impossible to rework the ICD defect. But unlike voids, if detected in time, the panels can be reprocessed.
Connect the Dots: Designing for Reality—Outer Layer Imaging
09/26/2024 | Matt Stevenson -- Column: Connect the DotsWelcome to the next step in the manufacturing process—the one that gets the chemical engineer in all of us excited. I am referring to outer layer imaging, or how we convert digital designs to physical products. On a recent episode of I-Connect007’s On the Line with… podcast, we explained how the outer layer imaging process maps the design’s unique features onto the board.
Trouble in Your Tank: Things You Can Do for Better Wet Process Control
09/11/2024 | Michael Carano -- Column: Trouble in Your TankFor 40 years, I have been involved in the printed circuit board, circuit board assembly, and semiconductor technology segments, preaching about minimizing defects and improving yields. This is especially true as technology becomes increasingly complex, and additional focus must be placed on yield improvements. Process management and wet process control must be front and center, so it’s quite interesting and timely to talk about wet process control and management for this month’s issue. This theme fits quite well with today's global events. For this industry, the technical curve has steepened dramatically in the past few years.
Atotech to Participate at KPCA Show 2024
09/03/2024 | AtotechMKS’ Atotech will participate in this year’s KPCA Show 2024 in Incheon, held at Songdo Convensia from September 4-6, 2024.
Victory Announces Breakthrough in PCB Technology with New Product Launch
08/29/2024 | openPRShenzhen Victory Electronics Technology Co., Ltd., a leader in the printed circuit board (PCB) manufacturing industry, is proud to announce the successful development of a groundbreaking new product.