-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueShowing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
All About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Estimated reading time: 1 minute

Beat the Traffic Jam - Effective Routing of Multiple Loads
In a previous Beyond Design, Impedance Matching: Terminations, I discussed various termination strategies and concluded that a series terminator is best for high-speed transmission lines. Different terminating strategies have advantages and disadvantages depending on the application, but, in general, series termination is excellent for point-to-point routes, one load per net. In summary, series termination reduces ringing and ground bounce.
But, what if there are a number of loads--how should these transmission lines be routed? For perfect transfer of energy and to eliminate reflections, the impedance of the source must equal the impedance of the trace(s) to the load.
Bifurcated transmission lines, traces that are split into two or more T-sections, are sometimes used to distribute signals to multiple loads. The impedance of the bifurcated line is not constant along the trace route, as the traces branching from the T-section are virtually in parallel when you consider the equivalent AC circuit. In this case, proper termination has not been provided and an impedance discontinuity can be seen at the branch point. In Figure 1, a 50 ohm signal from the driver is split into two transmission lines of 50 ohms and then into the loads. At branch (A), the two 50 ohm traces in parallel equate to a 25 ohm equivalent trace, and a mismatch in impedance. Figure 2 illustrates the resultant waveform of the unmatched transmission line.
Editor's Note: This column originally appeared in the February 2014 issue of The PCB Design Magazine.
More Columns from Beyond Design
Beyond Design: The Metamorphosis of the PCB RouterBeyond Design: Radiation and Interference Coupling
Beyond Design: Key SI Considerations for High-speed PCB Design
Beyond Design: Electro-optical Circuit Boards
Beyond Design: AI-driven Inverse Stackup Optimization
Beyond Design: High-speed Rules of Thumb
Beyond Design: Integrated Circuit to PCB Integration
Beyond Design: Does Current Deliver the Energy in a Circuit?