-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssuePower Integrity
Current power demands are increasing, especially with AI, 5G, and EV chips. This month, our experts share “watt’s up” with power integrity, from planning and layout through measurement and manufacturing.
Signal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Cadence’s Brad Griffin Digs Deep Into DDR
February 22, 2015 | Kelly Dack, I-Connect007Estimated reading time: 12 minutes

Guest Editor Kelly Dack stopped by the Cadence Design Systems booth at DesignCon 2015, where he sat down with Product Marketing Manager Brad Griffin to discuss Cadence’s advanced PCB design and signal integrity tools, and the company’s focus on DDR.
Kelly Dack: Brad, since you’re the product marketing director for Cadence Design Systems, I’d like to ask a few questions about your DDR products. But first, please give us a brief overview of DDR.
Brad Griffin: I’d be happy to. One of the main things with a computer is that it has memory and you can store data in that memory—that’s kind of what makes it a computing device. So they’ve been finding ways over the life of electronics to store and retrieve data faster out of memory. Somewhere around 2002, we came up with this idea of doubling the data rate in DDR memory, or double data rate memory. That was unique because basically, we clocked the data into the memory, both on the rising edge and on the falling edge of the clock. It was a clever way with the same sort of signaling to basically double the data rate speeds.
KD: Was there an organization involved? Was it standardized?
BG: That’s really good question. As of right now, there's a standard committee called JEDEC, and I'm going to assume they were in place back in the 2002 timeframe, but I’d have to go back and check. But obviously there's memory companies and they have to be able to plug-and-play with different controllers as they’re driving the memory, so there's probably always been a standard they’ve been marching toward. That process used to be a lot simpler. You’d be transferring data at maybe 100 megabits per second. You would send the data, clock it in, and it wasn’t nearly as complicated as it is now.
KD: So where has DDR come from, and where is it now?
BG: There was DDR2 and then DDR3, and probably 2015 is going to be the transition where most DDR3 designs go over to DDR4. Typically, this happens because the DDR4 memory will actually become less expensive than some of the DDR3 memory.
KD: What does that mean as far as the technology from a power standpoint as well as a data standpoint?
BG: The main difference from a technology standpoint from DDR3 to DDR4 is the speed. It basically just gets faster. So any application you have in the computer that’s run with DDR4 memory will make for a faster computer than one running with DDR3. One of the exciting things that has migrated probably over the last five to seven years is this new version of DDR called LPDDR, which stands for low power. That’s been something primarily used in mobile devices because you certainly don’t want your cell phone to run out of power in the middle of the day.
KD: With this reference to power, if I understand correctly, DDR came from a 2.5 V system and shrunk to 1.8 V and 1.5 V, and DDR4 is down at a little over 1 V. That seems really low already, so where will the LPDDR take us?
BG: If you can believe it, the LPDDR4 specification only has a 300 mV swing, so it's really low. That means that for signal integrity and power integrity engineers, there's really very little margin left. We said there was very little margin left when it was 1.5 V, and now we’re down to 300 mV; this very small swing of data means that your signals have to be clean and your power planes have to basically be stable. Because then you have to have a power/ground bounce associated with simultaneous switching signals. It’s going to basically make it so that you're not going to meet the signal quality requirements that JEDEC puts in place for LPDDR4. So designs are getting really interesting. What we’re excited about this year at DesignCon are the things we’ve been putting into our tools to enable designers to validate that they've done everything they need to do to meet the LPDDR4 requirements.
Page 1 of 3
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Marco Pieters Appointed ASML Chief Technology Officer
10/09/2025 | ASMLASML Holding NV (ASML) announced the appointment of Marco Pieters as Executive Vice President and Chief Technology Officer, reporting to President and Chief Executive Officer, Christophe Fouquet.
Advanced Rework Technology Inspires Students at National Manufacturing Day 2025
10/08/2025 | A.R.T. Ltd.Advanced Rework Technology Ltd. (A.R.T.), a leading independent IPC-accredited training provider, joined forces with Jaltek, a UK-based electronics manufacturer with over 35 years’ experience in designing and producing high-quality electronic products, to deliver hands-on workshops for students during National Manufacturing Day 2025.
I-Connect007 Releases Episode 5 of Groundbreaking Ultra HDI Podcast Series
10/08/2025 | I-Connect007In Episode 5 “Via Structures,” host Nolan Johnson welcomes back John Johnson, Director of Quality and Advanced Technology at American Standard Circuits. Together, they explore the designer’s perspective on UHDI’s impact on via structures, diving into the metallurgy, chemistry, mechanical considerations, and stackup reduction that provide greater design flexibility and fewer constraints than ever before.
EDADOC Ushers in a New Era of Robotics Innovation
10/07/2025 | Edy Yu, Editor-in-Chief, ECIOOn Sept. 11, Shanghai Zhiyuan Technology Co., Ltd. (MScape) made a stunning debut at Shanghai’s 2025 Fourth North Bund Cybersecurity Forum and Cyber Intelligence Security Frontier Technology and Equipment Exhibition. The company presented the world’s first Dvorak super heterogeneous architecture and the Zhijing T-series-embodied intelligence (robotics) edge computing power platform. This has been a game-changer in the cybersecurity technology field, filling the gap in the domestic robotics core computing power platform.
TI DLP® Technology Delivers High-Precision Digital Lithography for Advanced Packaging
10/02/2025 | Texas InstrumentsTexas Instruments is enhancing the next generation of digital lithography with the introduction of the DLP991UUV digital micromirror device (DMD), the company’s highest resolution direct imaging solution to date.