-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Developments with Metallic Thermal Interface Materials
April 7, 2015 | Indium CorporationEstimated reading time: 2 minutes

Reliability of electronic modules and systems is critical. For decades, the need for temperature modulation and control has been identified as a principal factor impacting semiconductor and packaging reliability. In most electronic systems, individual semiconductors are designed, manufactured, and sold for application within a system manufacturer’s product. The interface between the external mounting surface of the semiconductor package and any required thermal management component is increasingly the center of attention as efforts continue toward improving the performance and reliability of the overall system.
Thermal Interface Material Function
Thermal interface materials (TIM) provide a critical function on the external surface of the module or device and within a semiconductor package, such as a high-performance server processor module where several semiconductor die and one or more heat spreaders or a module lid are employed to provide the most effective heat transfer possible. The critical role of the thermal interface material is to improve the efficiency of heat transfer from the external mating surface of the semiconductor device and the surface to which it is attached, typically an air-cooled heat sink, liquid cold plate, or the metal surface of some other component.
Application Interface Conditions and Impact on Thermal Performance
The ideal interface consists of metal-to-metal contact across the contact area, which would require precision machining and polishing of the two surfaces to a degree and also add significant manufacturing costs to those components. In lieu of a set of ideal polished surfaces, the efficient TIM provides a very thin thermally conducting material which, given variation in metal surfaces, may vary in thickness through the interface. The thickness of the metal TIM at various points across the interface would be determined by several factors: the type of mechanical fasteners used to attach the device to the heat sink or cold plate, the amount of clamping force exerted, the location of the fasteners, and the degree of roughness and flatness of the two manufactured surfaces. The surface of a liquid cold plate, for example, may be a machined surface of a casting (which may expose internal voiding within the casting), the machined surface of an aluminum or copper cold plate, or the raw extruded surface of an aluminum cold plate, if no machining is specified. The mating surface of the heat sink or cold plate may also have variations due to warpage or bending (depending on the thickness), the care exercised when handling during manufacturing and assembly, and the relative clamping force applied versus the stiffness and strength of the heat sink or cold plate.
If mechanical fasteners such as screws or bolts are located only at the periphery of a large module, the flatness of the module metal baseplate can be altered as fasteners are torqued into place. This can change the physical characteristics of the interface when measured at a greater distance from the locations of the fasteners. For instance, standard power semiconductor modules, known as isolated gate bipolar transistors (IGBTs), are very common components used in electrical drives and machine tools, controlling wing flaps and actuators for aircraft, and switching devices within electrical inverters for propulsion powertrains in vehicles. Standard IGBT module footprints have industry-standard dimensions, with specified locations for fasteners, which are typically at the periphery of the device. There are also some industry designs for small modules, which include one or more fasteners in the center of the device.
Editor's Note: This article originally appeared in the March issue of SMT Magazine.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.