-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueProduction Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Solder Paste Stencil Design for Optimal QFN Yield and Reliability
April 29, 2015 | Ben Gumpert, Lockheed MartinEstimated reading time: 13 minutes
Abstract
The use of bottom terminated components (BTC) has become widespread, specifically the use of Quad Flat No-lead (QFN) packages. The small outline and low height of this package type, improved electrical and thermal performance relative to older packaging technology, and low cost make the QFN/BTC attractive for many applications.
Over the past 15 years, the implementation of the QFN/BTC package has garnered a great amount of attention due to the assembly and inspection process challenges associated with the package. The difference in solder application parameters between the center pad and the perimeter pads complicates stencil design, and must be given special attention to balance the dissimilar requirements.
The lack of leads on the QFN/BTC package and the low standoff height result in significantly less compliance relative to other package types, making the QFN/BTC package more susceptible to CTE mismatch issues. Careful assembly of QFNs and proper printed circuit board (PCB) design can result in acceptable reliability depending on the overall design. One area that has not been well addressed, however, is the impact of die to package size ratio, and how this factor should be considered in circuit card assembly. IPC-7093 mentions the inverse relationship between relative die size and reliability, and Syed and Kang found the relationship to be non-linear, yet die size is seldom noted in component datasheets, and vendor recommendations do not include this ratio as a factor in assembly.
In this study, the volume of solder used in assembly of two QFN/BTC packages will be varied to investigate the relationship between standoff height and thermal cycle life, and to determine acceptable process limits with respect to first-pass yields. The QFNs selected have dissimilar die to package size ratios to assess the impact of this factor on the process window. Solder joint defect levels and thermal cycle results will indicate the ability to adjust manufacturing parameters to achieve a balance between the two objectives of process yield and reliability. The results will define a process window that provides the optimal installation of these packages.
Introduction
A wealth of information is available for optimizing PCB design and assembly for QFN packages, and this industry knowledge has been well cataloged in IPC-7093 [1]. This guideline reflects the recommendations found in many of the major component vendor application notes [2-8]. These documents all agree with respect to the typical target conditions for the solder joint; a standoff height of 2-3 mils, which is generally achieved by printing 1:1 on the perimeter lands and with a 20%-50% reduction of solder paste coverage on the center pad (although some vendors give more specific recommendations within this range of solder reduction on the center pad). These parameters will generally provide a high first-pass yield while providing for a relatively robust joint. The trade-offs for adjusting solder paste are also often mentioned; decreasing the volume of solder paste can reduce solder defects such as bridging but can negatively impact reliability, while increasing solder volume can do the opposite. Significant increases to the solder volume, however, can cause the component to float, potentially creating opens or misalignment.
One QFN/BTC property that is briefly mentioned in IPC-7093 and which been demonstrated to have a significant impact on QFN reliability is die size, or die to package ratio [9-11]. Component datasheets do not typically include information on the size of the die, but a sample of QFNs from several component vendors exhibited die to body ratios ranging from 0.27 to 0.58.
For the circuit card assembler, most of the decisions related to ensuring the best potential reliability of the QFN package have already been determined through design of the component package itself and of the PCB footprint. Once the design makes it to the point of assembly, the assembler has limited options to impact reliability, and these are dominated by stencil design (to affect standoff height and solder joint configuration). Standoff height can be controlled in several ways (bumping, use of preforms, stencil modification). Although standoff height is one of the standard recommendations from IPC-7093 and component vendors (2-3 mil), fillet formation is also recommended [10-13]. Kim et al. [12] concluded that a large fillet was preferred when increasing stand-off height of the component which was achieved at the expense of the fillet size.
Given the number of characteristics related to QFNs and their implementation that can impact reliability, it is unclear whether an assembler can apply a standard set of rules for installing QFNs onto a PCB, or if they must be evaluated on a case by case basis. Should the assembler adjust stencil apertures based on other design criteria, or should the standard 20-50% reduction of solder on the center pad be followed regardless, and if so, what value in that range is most desirable? Or should a greater reduction of solder paste be applied such that stand-off height is sacrificed to ensure large, convex fillets?
In this study, two QFN/BTC packages were evaluated for robustness of solder joints relative to changes to solder joint height controlled by center pad solder paste reduction. Extreme levels of solder variation (outside of the typical 20-50% reduction) were employed to demonstrate the amount of influence this factor may have and the points at which assembly defects may become important.
Experimental Procedure
The PWB selected for this study is a commercially available QFN/BTC style package test board. The board is constructed of FR-4 epoxy laminate, is two-sided (although only one side will be used in this study), is 0.062 inch thick, and has a HASL finish over copper. Approximate X-Y CTE is 11-13 ppm/°C. Two QFN style component packages will be used. These components have daisy chain circuitry to match the PWB, and have the parameters shown in Table 1.
Page 1 of 4
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.
Indium to Showcase High-Reliability Solder and Flux-Cored Wire Solutions at SMTA International
10/09/2025 | Indium CorporationAs one of the leading materials providers in the electronics industry, Indium Corporation® will feature its innovative, high-reliability solder and flux-cored wire products at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
‘Create your Connections’ – Rehm at productronica 2025 in Munich
10/08/2025 | Rehm Thermal SystemsThe electronics industry is undergoing dynamic transformation: smart production lines, sustainability, artificial intelligence, and sensor technologies dominate current discussions.