-
-
News
News Highlights
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current Issue
The Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Happy’s Essential Skills: Design of Experiments
March 17, 2016 | Happy HoldenEstimated reading time: 9 minutes
Design of experiments (DOE) is one of the most powerful and influential engineering tools for product yield improvements, new products or processes development, or for problem solving. As mentioned in my last column, process problems led me to a career in printed circuits, and quickly solving those problems led me to a bonus stock award and a great life. Even though I knew nothing about printed circuit manufacturing processes, I was able to quickly find the root causes of all the problems and fix them. My secret? Total quality control (TQC), statistics, and DOE.
Experimentation is the manipulation of controllable factors at different values to see their effect on some desired result. An engineer can use three methods of experimentation:
- Trial and error
- One factor at a time
- Design of experiments
Trial and Error
Hopefully a trained engineer will not use this technique. But in the rush to fix the problem, one might think they know the true root cause and start changing parameters. In my case, I didn’t know the parameters so first I talked to the other engineers, line-workers and supervisors and created a pareto of possible causes. Then I called the chemical suppliers and asked them what they thought was important. Lastly, I went to the industry bible, the Printed Circuit Handbook by Clyde Coombs, and read what it had to say. From this list I got an inkling of what the possible causes could be.
One Factor at a Time
The objective of any experiment is to establish a probable cause-and-effect relationship. The common sense approach is to make trial changes of the most likely factors contributing to the observed problem, keeping all other contributor variables constant during the experiment, and then seeing if a significant correlation can be established between the suspected cause and the effect. If the experiment with the factor chosen gives no conclusive results, the next most likely factor is tried in the same way. Although this experimental strategy sounds logical, as you can see in Figure 1, it tests only a part of the process matrix and only what you know (variables X1, X2 and X3 and changing one at a time from -1 to +1 levels). Four steps are involved in this process:
- Observation: Study all phases of the situation in which the effect to be controlled occurs.
- Reflection: Try to think of all the causes which might influence this effect. Consult with others who have had experience with this or similar situations.
- Trial: Try the influence of the most likely factor; if not successful, try the next most likely one, and so on.
- Check: With a purported relationship established, attempt to turn the effect on and off, like a water faucet, by varying the suspected cause back and forth between its different levels.
The common sense approach is always recommended as a first try. It is fast and cheap when it works— as it often does for confirming single or independent factors whose presence can be logically suspected. However, when it has been tried several times on a problem with no clear cut solution emerging, a more sophisticated approach is called for—that of statistical experimentation.
This was the situation when asked to help the printed circuit plant. Months of tests and experimentation had not resulted in finding a cause for the problems and the solution.
Figure 1: Experimental methods: Can be trial and error or factorial design of experiments (DOE) that is much more comprehensive and effective than one-factor-at-a-time method. The DOE software can be found in The NIST/SEMETECH e-Handbook of Statistical Methods[1].
Page 1 of 3
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
New Podcast Episode: “Bonding Innovation: How Adhesives and Coatings Are Powering the Next Generation of Electronics”
11/05/2025 | I-Connect007I-Connect007 has released of a new episode in its Voices of the Industry podcast series, titled “Bonding Innovation: How Adhesives and Coatings Are Powering the Next Generation of Electronics.” Hosted by Nolan Johnson, this insightful discussion dives deep into the evolving world of adhesives and coatings—materials that are redefining performance, reliability, and design in modern electronics manufacturing. Dymax's Doug Katze, a leading expert in adhesive technologies, delivers what can only be described as a master class on how these critical materials are adapting to meet rapidly changing market demands.
Target Condition: Distribution of Power—Denounce the Ounce
11/05/2025 | Kelly Dack -- Column: Target ConditionHave you ever wondered why the PCB design segment uses ounces to describe copper thickness? There’s a story behind all of this—a story that’s old, dusty, and more than a little absurd. (Note that I didn’t add “Like many of us.”) Legend has it that back in the days of copper tinkers and roofing tradesmen, the standard was set when a craftsman hammered out a sheet of copper until it weighed one ounce, when its area conveniently matched the square of the king’s foot.
NEDME 2025 Draws Strong Northwest Crowd, Builds on Tradition of Regional Collaboration
10/31/2025 | NEDMEThe NW Electronics Design & Manufacturing Expo (NEDME) 2025 once again brought together the Pacific Northwest community for a full day of learning, networking, and industry connections.
Keysight Advances Quantum Engineering with New System-Level Simulation Solution
10/30/2025 | BUSINESS WIREKeysight Technologies, Inc. announced the release of Quantum System Analysis, a breakthrough Electronic Design Automation (EDA) solution that enables quantum engineers to simulate and optimize quantum systems at the system level.
WestDev Announces Advanced Thermal Analysis Integration for Pulsonix PCB Design Suite
10/29/2025 | WestDev Ltd.Pulsonix, the industry-leading PCB design software from WestDev Ltd., announced a major enhancement to its design ecosystem: a direct interface between Pulsonix and ADAM Research's TRM (Thermal Risk Management) analysis software.