-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueSignal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
Showing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Zuken Teams With Nano Dimension for 3D Printing Design Flow
November 25, 2017 | Andy Shaughnessy, PCB Design007Estimated reading time: 10 minutes

At PCB West, Zuken shared a booth with Nano Dimension. Zuken has been working with Nano Dimension for some time, and adding support for 3D printing and nanotechnology to its design tool platforms. I sat down with Zuken’s Humair Mandavia and Nano Dimension’s Simon Fried to learn more about this alliance, and to find out more about this odd-looking box being demonstrated in Zuken’s booth.
Andy Shaughnessy: I'm here at PCB West with Humair Mandavia and Simon Fried. Humair, tell us a little bit about what you're doing with Nano Dimension.
Humair Mandavia: Thank you, Andy. We had Nano Dimension as a guest at our booth at PCB West this year to showcase our partnership and share with the market what we're doing. We’re enabling users to go from the system-level 3D environment, using any kind of technology, into the printing stage and we highlighted how we're going to ease that journey and process. That's really what we're here to share.
Shaughnessy: Simon, tell us a little bit about this thing you have at the booth. What does it do?
Simon Fried: The thing that we have in the booth, hulking around the front center stage, is our 3D printer for circuit boards. It's an additive approach to constructing multilayer circuitry that’s backwards-compatible with the kind of design files that you'll find in the industry, your Gerbers and your Excellons. So far, it's familiar territory.
What it is doing is it's working in a very different way, and it's using different materials and a fully additive process to create that circuit. So, there are some novelties and some differences to a traditional multi-layer circuit board. That being said, we've been very careful to make sure the materials are, from an electrical perspective, as similar performance-wise to industry standards as possible.
So that's how one tackles planar circuitry, and then there's obviously another opportunity, which is how to open up that potential Pandora's Box of non-planar circuitry. That's something that I think the industry has to look forward to exploring.
Shaughnessy: Is this printed electronics?
Fried: Yes. About a week ago, I was reading my kids a book about a duck that could eat holes. If there was a hole, the duck would eat it, eating up the problems leaving perfection behind. That's a little bit like the additive process. It’s a bit magical, adding whatever is missing, and essentially you're getting rid of your traditional manufacturing processes. You're not plating, you're not drilling, and you’re not pressing. You're depositing materials in a very precise manner to create things, but you can also print a hole, by printing around an empty XY coordinate.
Shaughnessy: We were talking earlier about some of the challenges, because we're used to dealing with copper, and here you've got conductive silver and some of the other things that might affect signal integrity. Can you talk about that?
Mandavia: I can explain that. For a little bit more background, Zuken got into the whole additive space several years back for inkjet printers. We learned that from the CAD side that there's nothing unique, but when you start going into an inkjet printer, for example, that process of optimizing for ink droplets is just unique to your traditional fabrication.
We have a DFM product that specializes in only optimizing the spaces for bitmap resolutions so that you get the best quality output using inkjet. When we started working with Nano Dimension, through mutual customers we identified three key components that we wanted to focus on. The first is the business aspect, which is just lead time. A lot of the companies that we work with already understand the ROI of additive manufacturing, and then you also compound that with what's happening in defense and aerospace with companies driving towards a new methodology with digital tapestry and digital twin. Now, when we go into these concepts, there's already a model in place to justify having that kind of option inside their production flow. That brings in the value proposition for 3D printing for electronics.
The second component is a journey in itself. You brought up problems, but when we start looking at our partnership we just looked at how we're solving some of those problems. So yeah, different materials, different conductive inks, but they’re not an issue. By working together and working with other industry partners, we're already looking at how we can provide the ability to have downloadable design rule kits if they want to use it in a Zuken design flow. If they're not using our flow, no big deal. You could bring the design into our setup that we're working on and then bring in design rule-checks to make sure that you’re at least adhering to those requirements that are specific to any of the materials that are used for additive manufacturing over 3D printing for PCBs.
And then also, we're working with other industry partners to go through and validate the designs electrically. So whatever we're preparing for the market, all the design rules and checks are qualified. We want to take the mystery out, and just making that path from designing to printing much easier.
The third component is the freedom to be able to implement any board technology. We released CR-8000, as I mentioned, a native system-level 3D environment; it will support traditional design and allows you to scale-up to multi-domain, concurrent design, and that includes chips, packages, boards, and mechanical. CR-8000 is where real engineering and design come together.
When we started looking at 3D printing, we also needed to consider non-planar objects, for example MIDs. Nano Dimension is displaying some examples in our booth of non-planar electronics that we're working on now that show how we can allow that seamless interaction to design and print actual 3D electronics, and also reduce the hand-off to mechanical. It's still a little bit of a mechanical challenge, that's how people are juxtaposing it and producing it, so we want to make that experience better. So we're working on that, but then there are also the data models. We're working with IPC and IEC in Asia to define industry standards to help simplify that data transfer. We want to take advantage of our unique technology to make a better experience for the user, and we plan to work with Nano Dimension and our industry partners to advocate this technology to the market. There are many new applications ready to take advantage of this.
Page 1 of 2
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.