-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Thermal Capabilities of Solder Masks: How High Can We Go?
August 24, 2018 | Sven Kramer, Lackwerke PetersEstimated reading time: 2 minutes

Abstract
This article focuses on three different coating material groups that were formulated to operate under high thermal stress and are applied at the printed circuit board manufacturing level. While used for principally different applications, these coatings have in common that they can be key to a successful thermal management concept especially in e-mobility and lighting applications. The coatings looked at consist of: Specialty (green transparent) liquid photoimageable solder masks (LPiSM) are compatible with long-term thermal storage/stress in excess of 150°C. Combined with the appropriate high-temperature base material, and along with a suitable copper pre-treatment, these solder resists are capable of fulfilling higher thermal demands placed on them. In this context, long-term storage tests as well as temperature cycling tests were carried out. Moreover, the effect of various copper pre-treatment methods on the adhesion of the solder masks was examined at 150, 175 and 200°C over the aging process. For this purpose, test panels were stored for 2000 hours at the respective temperatures and were submitted to a cross-cut test every 500 hours. Within this test set-up it was found that a multi-level chemical pre-treatment gives significantly better adhesion results, in particular at 175°C and 200°C, as compared to a pretreatment by brush or pumice brush. Breakdown voltage as well as tracking resistance were also studied.
For an application in LED technology, the light reflectivity and white colour stability of the printed circuit board are of major importance, especially when high-power LED are used which can generate larger amounts of heat. For this reason, a very high coverage power and an intense white colour with high reflectivity values are essential for white solder masks. These “ultra-white” and largely nonyellowing LPiSM need to be able to withstand specific thermal loads, especially in combination with high-power LED lighting applications.
Introduction
The demands and loads placed on photoimageable solder masks rise to unknown new levels. Today’s solder masks are already exposed to a considerable level of thermal stress, high humidity and/or condensation. Especially in automotive electronics, the level specified for thermal resistance and thermal cycling resistance is constantly increasing. Due to higher currents and applications mounted in the engine compartment/gear box or close to the exhaust system, common photoimageable solder masks reach their performance limits. The thermal stress resulting from higher operating temperatures triggered the development of new solder masks or further development of existing solder masks. Here the level demanded by the industry in terms of permanent high temperature loads is typically 175°C.
To read the full version of this article which originally appeared in the July 2018 issue of PCB007 Magazine, click here.
Suggested Items
BEST Inc. Reports Record Demand for EZReball BGA Reballing Process
05/01/2025 | BEST Inc.BEST Inc., a leader in electronic component services, is pleased to announce they are experiencing record demand for their EZReball™ BGA reballing process which greatly simplifies the reballing of ball grid array (BGA) and chip scale package (CSP) devices.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.
KOKI Expands U.S. Sales Coverage with Multiple New Representatives
04/29/2025 | KOKIKOKI, a global leader in advanced soldering materials and process optimization services, is pleased to announce the expansion of its U.S. sales network with the addition of three new manufacturers’ representative firms: Assembled Product Specialists, Diversitech Reps Inc., and Eagle Electronics.
INEMI Call-for-Participation Webinar: BiSn-Based Low-Temperature Soldering Process and Reliability Project Phase 3b
04/28/2025 | iNEMIIn 2015, INEMI initiated the BiSn-Based Low-Temperature Soldering Process and Reliability Project to assess the feasibility of using low-temperature solders (LTS) in the SnBi system to address various technological, economic and ecological drivers for assembly of consumer computer electronic board products.