-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssuePower Integrity
Current power demands are increasing, especially with AI, 5G, and EV chips. This month, our experts share “watt’s up” with power integrity, from planning and layout through measurement and manufacturing.
Signal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
TUM Hyperloop Team Learns PCB Design on Way to Setting World Speed Record
February 14, 2019 | Andy Shaughnessy, Design007 MagazineEstimated reading time: 5 minutes
At AltiumLive Munich, I met with Tobias Bobrzik, a Technical University of Munich student and member of the TUM Hyperloop team. Hyperloop is an experimental, open-source mode of high-speed rail transportation created by a joint team of Tesla and SpaceX technologists. In 2015, Tesla’s Elon Musk announced the Hyperloop Pod Competition, which he hopes will pave the way for super-high-speed rail in the future.
In 2018, the TUM Hyperloop team’s prototype pod set the world speed record of 290 miles per hour, which lead to their meeting with Musk. Tobias designed some of the PCBs used in that vehicle, so I asked him to tell us more about this experience, and what he hopes to do for a career after he graduates from the university.
Andy Shaughnessy: Tobias, why don’t you tell us a little about yourself and how you got involved with this project at the Technical University of Munich.
Tobias Bobrzik: Six years ago, I started with electronics as a hobby including very simple analog circuits like blinking circuits. One year later, I switched to digital circuits and programming microcontrollers. I started with Arduino, then moved over to a professional IDE. By then, I was thinking, “Man, you can really create these PCBs on your own.” I read into some fundamental PCB stuff and started to learn how to work with the Altium software. My hobby of electronics was always next to my main tasks like school or at least university stuff. One year ago, I thought, “Maybe I can bring my hobby together with mechanical engineering.” In the end, I applied to the Hyperloop student team to do mechanical stuff or some electronic development, and then they decided that they need me for PCB design, microcontroller circuits, and sensor readings.
Shaughnessy: Tell me about the TUM Hyperloop team. I know that you’re the most senior member of the group attending this event.
Bobrzik: Our team has about 50 members, divided into several sub-teams like mechanical structure, propulsion or electronics and we developed and built our pod in about six month before the competition last year. Currently the fourth team is working hard on the new pod for the next competition, but for now I just give some advice and make sure that PCB-related things are ready.
Shaughnessy: So, you designed one of the boards on this vehicle?
Bobrzik: Yes, I did. I designed the main board, battery board, and the backplane, which was for distributing the signals from the main controller to the cables or the cable harness. The main controller is the heart of the electronics, responsible for controlling the motors, the brakes and calculating different sensor values.
Shaughnessy: Now, you are going for a mechanical engineering degree, but here you are doing PCB design. A lot of new designers I meet are mechanical engineers, and many didn’t know that PCB design was even a career. Do your friends who are not involved in this industry know about this career?
Bobrzik: At first, it sounds very paradoxical. I’m absorbed in mechanical engineering, but mechanical engineers typically try to avoid electronics as much as they can. But at a point, I told myself, “It’s your hobby, and maybe you can combine both of them.” I also think the future lies in between both. The whole world gets more connected. The connection is created by the electronics, and mechanical engineering is also one of the terms that we have to concentrate on such as autonomous vehicles or even the Hyperloop. Therefore, you have to combine both of them as much as you can.
Shaughnessy: What powers this vehicle? I know it’s kind of complicated, but in a nutshell, how does it run?
Bobrzik: It’s an electrically-driven vehicle powered by lithium polymer batteries, which features a very high power-to-weight ratio. This allows a very high acceleration in a short distance.
Shaughnessy: So, it has a lot of batteries that you have to charge. How long do they take to charge?
Bobrzik: It depends on the charger that you use, but we don’t focus on charging time. We charge it overnight.
Shaughnessy: What’s the max speed you can go?
Bobrzik: Our max speed was 467 kilometers per hour.
Shaughnessy: Wow, so around 290 miles per hour.
Bobrzik: It’s hard to imagine.
Shaughnessy: And how many other teams were you competing against?
Bobrzik: There were 20 teams invited by SpaceX in the last competition. For the final round, there were five teams chosen, and they could compete on the final day. Our team was the last one that could run their pod. Everybody was excited, and at the moment Elon Musk showed up, everyone was even more exited. After the tube has been evacuated in about 20 minutes, which have been the longest 20 minutes I can remember, we launched the pod, and everyone got an amazing feeling. As we saw that we had reached a maximum speed of 467 kilometers per hour, we were ecstatic.
Shaughnessy: How old are you?
Bobrzik: I’m 22 years old.
Shaughnessy: You mentioned meeting Elon Musk. Do you have any other heroes in the industry that you look up to?
Bobrzik: Not really. Sometimes, I read some interviews with Elon and entrepreneurs who share their experiences in launching a startup.
Shaughnessy: That’s great. Do you ever build things like drones or RC planes?
Bobrzik: Oh yes, I do. In my free time between the semesters, I built drones at home. I design everything on my own, like creating a frame, programming, designing and soldering the electronics. That was also a central project back in school for me because I have learned how to combine actuators like motors with the mechanical structure, for example, and how to integrate everything in the frame.
Shaughnessy: Do you think that you may want to be a circuit board designer? There are so many things you’re learning about, and you can take this in all different directions. I’m just thinking that we need more young circuit board designers; we’re running out of them pretty rapidly.
Bobrzik: I think that electrical engineering is a passion for me, so there will be electrical components in my future projects, too. I really like designing boards because you can create your own system with interfaces to other systems. There’s no way around electronics; I think that PCB design is such a fundamental step you can’t jump over. But in the future, I want to create mechanical structures and machines mainly, while having an eye on the electrical side, too.
Shaughnessy: Great! If you want to be a PCB designer, we’d certainly be glad to have you. Thank you, Tobias.
Bobrzik: Thanks, Andy.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
RT-Labs Joins STMicroelectronics Partner Program to Accelerate Industrial Communication
10/16/2025 | RT-LabsRT-Labs, a leading provider of real-time software solutions for industrial automation, announces that it has joined the STMicroelectronics Partner Program to integrate its Ethernet-based industrial communication stacks into ST’s development environments and microcontroller platforms.
Our Legislative Outlook: PCB007 Magazine October 2025 Issue
10/16/2025 | I-Connect007 Editorial TeamMost agree that we are experiencing an unprecedented time in global business and economics, with rules and laws that open doors to business but can complicate operations and make profitability more challenging. This month, PCB007 Magazine features some of today’s leading experts on legislative issues affecting the electronics industry, including rules and laws, trade, sustainability, business expansion, grants, and more in the U.S., Europe, and China.
Foxconn's Rotating CEO, Yang Qiujin, Named One of Asia's Most Influential Women
10/15/2025 | Foxconn ElectronicsHon Hai Precision Industry Co., Ltd.'s management team has once again received recognition! Rotating CEO Kathy Yang has been named to Fortune magazine's " Most Powerful Women Asia 2025 " list of the 100 most influential women in Asia , achieving a remarkable fifth place in her debut.
Light-curable Solutions for Reliable Electronics in Space Applications
10/15/2025 | Virginia Hogan, DymaxDesigning electronics for space environments, particularly those in low Earth orbit (LEO), requires careful consideration of materials that can withstand extreme conditions while supporting long-term reliability. Engineers designing satellite systems, aerospace instrumentation, and high-altitude platforms face a familiar set of challenges: contamination control, mechanical stress, thermal cycling, and manufacturability.
Advanced Semiconductor Packaging Market Sees Rising Adoption Across Automotive and Industrial Sectors
10/14/2025 | openPRThe semiconductor packaging market size is estimated to reach at a CAGR of 7.2% during the forecast period (2024-2031).