-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
Fueling the Workforce Pipeline
We take a hard look at fueling the workforce pipeline, specifically at the early introduction of manufacturing concepts and business to young people in this issue of PCB007 Magazine.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Testing New Networking Protocols
March 22, 2017 | MITEstimated reading time: 4 minutes

The transmission control protocol, or TCP, which manages traffic on the internet, was first proposed in 1974. Some version of TCP still regulates data transfer in most major data centers, the huge warehouses of servers maintained by popular websites.
That’s not because TCP is perfect or because computer scientists have had trouble coming up with possible alternatives; it’s because those alternatives are too hard to test. The routers in data center networks have their traffic management protocols hardwired into them. Testing a new protocol means replacing the existing network hardware with either reconfigurable chips, which are labor-intensive to program, or software-controlled routers, which are so slow that they render large-scale testing impractical.
At the Usenix Symposium on Networked Systems Design and Implementation later this month, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory will present a system for testing new traffic management protocols that requires no alteration to network hardware but still works at realistic speeds — 20 times as fast as networks of software-controlled routers.
The system maintains a compact, efficient computational model of a network running the new protocol, with virtual data packets that bounce around among virtual routers. On the basis of the model, it schedules transmissions on the real network to produce the same traffic patterns. Researchers could thus run real web applications on the network servers and get an accurate sense of how the new protocol would affect their performance.
“The way it works is, when an endpoint wants to send a [data] packet, it first sends a request to this centralized emulator,” says Amy Ousterhout, a graduate student in electrical engineering and computer science (EECS) and first author on the new paper. “The emulator emulates in software the scheme that you want to experiment with in your network. Then it tells the endpoint when to send the packet so that it will arrive at its destination as though it had traversed a network running the programmed scheme.”
Ousterhout is joined on the paper by her advisor, Hari Balakrishnan, the Fujitsu Professor in Electrical Engineering and Computer Science; Jonathan Perry, a graduate student in EECS; and Petr Lapukhov of Facebook.
Traffic control
Each packet of data sent over a computer network has two parts: the header and the payload. The payload contains the data the recipient is interested in — image data, audio data, text data, and so on. The header contains the sender’s address, the recipient’s address, and other information that routers and end users can use to manage transmissions.
When multiple packets reach a router at the same time, they’re put into a queue and processed sequentially. With TCP, if the queue gets too long, subsequent packets are simply dropped; they never reach their recipients. When a sending computer realizes that its packets are being dropped, it cuts its transmission rate in half, then slowly ratchets it back up.
A better protocol might enable a router to flip bits in packet headers to let end users know that the network is congested, so they can throttle back transmission rates before packets get dropped. Or it might assign different types of packets different priorities, and keep the transmission rates up as long as the high-priority traffic is still getting through. These are the types of strategies that computer scientists are interested in testing out on real networks.
Speedy simulation
With the MIT researchers’ new system, called Flexplane, the emulator, which models a network running the new protocol, uses only packets’ header data, reducing its computational burden. In fact, it doesn’t necessarily use all the header data — just the fields that are relevant to implementing the new protocol.
When a server on the real network wants to transmit data, it sends a request to the emulator, which sends a dummy packet over a virtual network governed by the new protocol. When the dummy packet reaches its destination, the emulator tells the real server that it can go ahead and send its real packet.
If, while passing through the virtual network, a dummy packet has some of its header bits flipped, the real server flips the corresponding bits in the real packet before sending it. If a clogged router on the virtual network drops a dummy packet, the corresponding real packet is never sent. And if, on the virtual network, a higher-priority dummy packet reaches a router after a lower-priority packet but jumps ahead of it in the queue, then on the real network, the higher-priority packet is sent first.
The servers on the network thus see the same packets in the same sequence that they would if the real routers were running the new protocol. There’s a slight delay between the first request issued by the first server and the first transmission instruction issued by the emulator. But thereafter, the servers issue packets at normal network speeds.
The ability to use real servers running real web applications offers a significant advantage over another popular technique for testing new network management schemes: software simulation, which generally uses statistical patterns to characterize the applications’ behavior in a computationally efficient manner.
“Being able to try real workloads is critical for testing the practical impact of a network design and to diagnose problems for these designs,” says Minlan Yu, an associate professor of computer science at Yale University. “This is because many problems happen at the interactions between applications and the network stack” — the set of networking protocols loaded on each server — “which are hard to understand by simply simulating the traffic.”
“Flexplane takes an interesting approach of sending abstract packets through the emulated data-plane resource management solutions and then feeding back the modified real packets to the real network,” Yu adds. “This is a smart idea that achieves both high link speed and programmability. I hope we can build up a community using the FlexPlane test bed for testing new resource management solutions.”
Suggested Items
Universal Avionics Connected FMS Certified on Part 25 Aircraft Models
04/01/2025 | Universal AvionicsUniversal Avionics (UA), an Elbit Systems company, today announces that FAA certification has been achieved for the installation of its Wi-Fi-enabled Flight Management System (FMS) on Part 25 aircraft models. The Approved Model List Supplemental Type Certificate (AML STC) serves as the foundation for the deployment of Universal’s Connected Avionics onto aircraft.
L3Harris Completes Sale of Commercial Aviation Solutions Business to TJC for $800 Million
03/31/2025 | BUSINESS WIREL3Harris Technologies has completed the previously announced sale of its Commercial Aviation Solutions (CAS) business to an affiliate of TJC L.P. for $800 million. The entire $800 million cash purchase price was paid to L3Harris at the closing of the transaction.
Koh Young Presenting on Real-Time Process Optimization at SEMI Heartland 2025
03/25/2025 | Koh YoungKoh Young, the global leader in True 3D measurement-based inspection and metrology solutions, is pleased to announce that Luis Rivera, MES Team Leader at Koh Young America, will speak at SEMIEXPO Heartland 2025, taking place March 31 to April 2 in Indianapolis, Indiana at the Indiana Convention Center.
Dr. Thomas Marktscheffel of ASMPT Honored for his Work on Open Interfaces
03/25/2025 | ASMPTDr. Thomas Marktscheffel, Director Product Management Software Solutions at ASMPT, was honored by the IPC at this year's IPC APEX EXPO in Anaheim, California, for his many years of commitment to the organization. The non-proprietary interface standards he helped develop form the basis for ASMPT’s intelligent factory concept.
New Power Management Chips from TI Maximize Protection, Density and Efficiency for Modern Data Centers
03/24/2025 | Texas InstrumentsTexas Instruments (TI) debuted new power-management chips to support the rapidly growing power needs of modern data centers. As the adoption of high-performance computing and artificial intelligence (AI) increases, data centers require more power-dense and efficient solutions.