-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueShowing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
All About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
PCB Cooling Strategies, Part 1
January 19, 2018 | Bin Zhou, EDADOCEstimated reading time: 7 minutes
- FR-4 (epoxy fiberglass cloth substrate) has high mechanical and dielectric properties, good heat resistance and moisture resistance, and good machinability. The heat resistance is superior to other substrates, and they can resist delamination and foaming for 150 seconds at a temperature of 288°C. The peel strength of the thermal stress test is also larger, reaching 1.5 N/mm. Its thermal conductivity is about 1.0W/mK. High-Tg FR-4 is even more tolerant to high temperatures. Because of these improved specifications, FR-4 is priced higher than the previous two materials.
- High-density-interconnect (HDI) designs usually use resin-coated copper (RCC), also known as coated copper foil. With increased durability and high anti-peel strength, it is easier to manufacture, and its smooth surface makes it suitable for smaller lines. However, due to the thin copper surface, and the media contains only resin, not glass fiber, so the hardness and heat transfer capacity is not as good as the other substrates.
- Ceramic substrate is a ceramic medium embedded in the copper foil, forming a special CCL. This material has excellent electrical insulation properties and high thermal conductivity, excellent solderability and high adhesion strength. It is generally used in the military and aerospace industries and is more expensive than the other substrates.
- Aluminum substrate is a type of metal CCL with good heat dissipation capabilities. It is generally designed for single-sided boards, mainly used in the design of LED light boards and low-end power boards. It is also used for high-end double-sided boards. There are very few applications for multilayer designs. Aluminum substrates minimize thermal resistance, with excellent thermal conductivity, electrical insulation properties and machining performance. Aluminum substrate voltage can take up to 4,500V and thermal conductivity levels of above 3.0W/mK.
It’s clear that paper-based and composite substrates are no longer suitable for current heat treatment applications, even when considering their lower cost. RCC is limited in HDI use, and its cooling capacity is very weak. Ceramic and aluminum substrates are the most recommended of these materials, with absolute advantages in heat dissipation and heat resistance, but these two materials are expensive and costly and need to be carefully selected based on the condition of their products. That leaves FR-4. While FR-4 does not have the same cooling capacity as ceramic and aluminum substrates, its price is much lower, and its thermal performance is also moderate enough to deal with the general circuit design. It is the most widely used PCB substrate.
After the PCB plate material is selected, the stack-up setup will begin. Each project has its own stack-up, the number of cascades required, and the cooling performance we have been discussing. Before planning the stack-up, we select the substrate with the lowest loss, highest stability, and highest thermal conductivity for good thermal management.
We must consider several things when designing the stack-up. First, we must consider the copper thickness. A thicker copper core layer can improve thermal management. Printed wire has a certain resistance and the passage of current through it will produce heat and cause a voltage drop. The higher the current through the wire, the higher the temperature. If the wire is heated for a long time, the copper foil will fall off due to the decrease of adhesive strength. Increasing the copper thickness can suppress the increase of the junction temperature of the components.
Second, in a multilayered PCB design, the number of power and GND planes will be considered. Heat can be dissipated through a large area of copper foil. Since the heat won’t be concentrated in a small area, the components will not be damaged. During the design process, the electrical interconnection between different layers is achieved by adding a via hole on the PCB board. The multilayer GND planes are connected to enlarge the heat dissipation area, thereby greatly improving the heat dissipation capability on the PCB. Figure 5 depicts a 2mm thick 8-layer laminate as an example: In addition to two outer and two inner layers, we designed four flat plane layers. The three GND layer not only ensure that the signal line aligns to the reference plane, but also maximizes the number of planes to achieve the best flat heat dissipation.
Aluminum substrates are commonly used in single-sided boards, sometimes with double-sided boards, and rarely in multi-layer boards. To improve its cooling capacity, we must increase the thickness of the aluminum because that allows for better heat dissipation. Under normal circumstances, single-layer heat dissipation is better than the double-sided. This is because, as the single-layer aluminum is exposed to air, the heat dissipation area increases, creating a direct heat exchange with the air. On the other hand, double-sided aluminum is caught in the middle by the thermal conductivity of thermal plastic and insulation effects, so the heat cannot be directly distributed. Aluminum laminate stack-up is more fixed, as seen in Figure 6.
Editor's Note: Part 2 of this article will appear in next week’s issue of the Inside Design Newsletter.
Bin Zhou is a senior PCB design engineer for EDADOC. He has 10 years of experience in high-speed design. His responsibilities include high-speed PCB design solutions, HDI, R&D and training.
Page 2 of 2
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/18/2025 | Nolan Johnson, I-Connect007It may be the middle of the summer, but the news doesn’t quit, and there’s plenty to talk about this week, whether you’re talking technical or on a global scale. When I have to choose six items instead of my regular five, you know it’s good. I start by highlighting my interview with Martyn Gaudion on his latest book, share some concerning tariff news, follow that up with some promising (and not-so-promising) investments, and feature a paper from last January’s inaugural Pan-European Design Conference.
Elephantech Launches World’s Smallest-Class Copper Nanofiller
07/17/2025 | ElephantechJapanese deep-tech startup Elephantech has launched its cutting-edge 15 nm class copper nanofiller – the smallest class available globally. This breakthrough makes Elephantech one of the first companies in the world to provide such advanced material for commercial use.
Copper Price Surge Raises Alarms for Electronics
07/15/2025 | Global Electronics Association Advocacy and Government Relations TeamThe copper market is experiencing major turbulence in the wake of U.S. President Donald Trump’s announcement of a 50% tariff on imported copper effective Aug. 1. Recent news reports, including from the New York Times, sent U.S. copper futures soaring to record highs, climbing nearly 13% in a single day as manufacturers braced for supply shocks and surging costs.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.