-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Moving From 28 Gbps NRZ to 56 Gbps PAM-4: Is it a Free Lunch?
September 24, 2018 | Yuriy Shlepnev, SimberianEstimated reading time: 1 minute
The usual way of signaling through PCB interconnects is a two-level pulse, an encoding of 1s and 0s or bits, named NRZ (non-return-to-zero) or PAM-2 line code type. Increasing the data rate with the NRZ code type presents some obstacles. For a 28 Gbps NRZ signal, the bit time is about 35.7 ps with the main spectral lobe below 28 GHz. For a 56 Gbps NRZ signal, the bit time is about 17. 86 ps, with the main spectral lobe below 56 GHz.
One can feel the problem already: Getting PCB interconnect analysis and measurements up to 56 GHz and beyond is very challenging, to say the least. In addition, the expected attenuation (dielectric, conductor and roughness losses) would also be an obstacle for 56 GHz NRZ. To reduce the bandwidth of the signal, pulse amplitude modulation with four levels (PAM-4) is being used more frequently on production boards.
Instead of single bits, symbols 00, 01, 10, and 11 are coded by four levels of the pulse and the symbol time is twice as large as the bit time for NRZ signal with the same data rate; that is about 35.7 ps for 56 Gbps PAM-4—the same as for 28 Gbps NRZ! If we know how to design interconnects that correlate with the measurements for 28 Gbps NRZ, is it going to be a free lunch to move to 56 Gbps NRZ?
To read this entire article, which appeared in the August 2018 issue of Design007 Magazine, click here.
Suggested Items
NASA’s Europa Clipper: Millions of Miles Down, Instruments Deploying
11/26/2024 | NASAHeaded to Jupiter’s moon Europa, the spacecraft is operating without a hitch and will reach Mars in just three months for a gravity assist.
At Schneider Electric, Future of MES/MOM Lies in the Cloud
11/26/2024 | Schneider ElectricSchneider Electric’s mission is to be the trusted partner for sustainability and efficiency. The company is helping customers across industries unlock efficiency, productivity, and resilience through digital transformation. Schneider Electric is also accelerating its own digital transformation across production facilities.
HPC Customer Engages Sondrel for High End Chip Design
11/25/2024 | SondrelSondrel, a leading provider of ultra-complex custom chips, has announced that it has started front end, RTL design and verification work on a high-performance computing (HPC) chip project for a major new customer.
Compal, ZutaCore Collaborate to Showcase Groundbreaking Waterless Two-Phase Liquid Cooling Server Solutions at SC24
11/25/2024 | Compal Electronics Inc.Compal Electronics, a global leader in server innovation, has partnered with ZutaCore®, a leading provider of waterless direct-to-chip two-phase liquid cooling (2P DLC) solutions, to introduce a series of groundbreaking server solutions.
Keysight, Instrumentix Partner to Launch Complete Trade Monitoring Solution for Financial Markets
11/21/2024 | Keysight TechnologiesKeysight Technologies, Inc. expanded its financial capital markets portfolio through a partnership with Instrumentix to introduce a cutting-edge trade solution.