-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Estimated reading time: 1 minute
10 Fundamental Rules of High-speed PCB Design, Pt. 2
In last month’s column, I introduced the 10 fundamental rules of high-speed PCB design. The first rule was to establish design constraints before commencing the design. This prime strategy sets constraints upfront based on pre-layout analyses or recommendations and guidelines and is integral to the design flow to maintain the established requirements. This month, I will elaborate on the importance of controlling the impedance and floor planning the placement based on connectivity.
II. Control the Impedance: Match the transmission line impedance to the driver and load. Create the stackup and define terminations to match the impedance.
For perfect energy transfer, the impedance of the driver must match the transmission line—assuming there is a high-impedance load. A good transmission line is one that has constant impedance along the entire length of the line, so no mismatches result in reflections.
Digital design typically uses a characteristic impedance of 50–60 ohms. However, this value becomes more critical as the edge rates increase. Different technologies also have specific impedance requirements. For example, Ethernet is 100 ohms, USB is 90 ohms differential, DDR2 memory is 50/100, and DDR3/4 is 40/80 single-ended/differential impedance. Thus, controlling impedance simultaneously on each signal layer with many different technologies can become a challenge. Further, as operating voltages decrease, the associated noise margins also decrease, which makes it even more critical to match the impedance. Figure 2 shows differential pairs set up to accommodate three different technologies on the same layers of the substrate.
Notice how the signal traces are tightly coupled to the reference planes. This helps prevent unwanted radiation, particularly on the outer microstrip signals. The center dielectric material (between layers 5 and 6) is also very thin (2.3 mils) and provides low-impedance planar capacitance to the power distribution networks (PDNs).
Unfortunately, drivers do not have the same impedance as the transmission line (typically 10–35 ohms), so terminations are used to balance the impedance, match the line, and minimize reflections. Reflections occur whenever the impedance of the transmission line changes along its length. This can be caused by unmatched drivers/loads, layer transitions, different dielectric materials, stubs, vias, connectors, and integrated-circuit (IC) packages. By understanding the causes of these reflections and eliminating the source of the mismatch, a design can be engineered with reliable performance.
To read this entire column, which appeared in the October 2018 issue of Design007 Magazine, click here.
More Columns from Beyond Design
Beyond Design: High-speed Rules of ThumbBeyond Design: Integrated Circuit to PCB Integration
Beyond Design: Does Current Deliver the Energy in a Circuit?
Beyond Design: Termination Planning
Beyond Design: Dielectric Material Selection Guide
Beyond Design: The Art of Presenting PCB Design Courses
Beyond Design: Embedded Capacitance Material
Beyond Design: Return Path Optimization