-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Impact of Serpentine Routing on Multi-gigabit Signal Transmission
November 29, 2018 | Chang Fei Yee, Keysight TechnologiesEstimated reading time: Less than a minute
Abstract
This article discusses the impact of PCB serpentine routing on high-speed signal integrity in terms of impedance discontinuity, insertion loss and eye diagram opening and differential to common mode conversion for signal transmission at 1Gbps (i.e., lower-speed grade) and 10Gbps (i.e., higher speed grade). This investigation is performed using Keysight ADS.
Introduction
Serpentine is a technique to minimize skew or misalignment of differential pairs (Figure 1). The number of segments and intra-pair spacing of serpentining impacts the high-speed signal transmission. As the intra-pair gap is enlarged for serpentining, the characteristic impedance of the PCB trace in differential mode will rise, as governed by Equations 1 and 2. This leads to impedance discontinuity, signal reflection, and ultimately, attenuation. The signal attenuation is heavily dependent on the number of segments and intra-pair spacing of the serpentine. Besides impedance discontinuity, increasing the intra-pair spacing at serpentine segments also loosens the electromagnetic coupling within the differential signal pair, and eventually worsens the differential to common-mode conversion that weakens the immunity of the channel against common-mode noise or crosstalk.
To read this entire article, which appeared in the October 2018 issue of Design007 Magazine, click here.
Suggested Items
TRI to Unveil New High-Throughput AOI and AXI at productronica 2023
09/15/2023 | TRITest Research, Inc. (TRI), the leading test and inspection systems provider for the electronics manufacturing industry, will join productronica 2023, which will be held at Messe München Center from November 14 – 17, 2023.
UK Space Agency Launches Consultation on Variable Liability Limits for Orbital Operations
09/15/2023 | UK Space AgencyThe proposals from the UK Space Agency follow a review into the UK’s approach to setting the amount of an operator’s liability in licences for orbital operations, a key commitment of the government’s National Space Strategy.
MediaTek Successfully Develops First Chip Using TSMC's 3nm Process, Set for Volume Production in 2024
09/14/2023 | MediaTekMediaTek and TSMC announced that MediaTek has successfully developed its first chip using TSMC's leading-edge 3nm technology, taping out MediaTek’s flagship Dimensity system-on-chip (SoC) with volume production expected next year.
MKS’ Atotech to Participate in IPCA Expo 2023
09/14/2023 | MKS’ AtotechMKS’ Atotech, a leading surface finishing brand of MKS Instruments, will participate in the upcoming IPCA Expo at Bangalore International Exhibition Centre (BIEC) and showcase its latest PCB manufacturing solutions from September 13 – 15.
Comtech Unveils New BRIDGE Solutions to Increase Access to Global Hybrid Connectivity
09/12/2023 | Business WireComtech launched its new blended, resilient, integrated, digital, global, end-to-end (BRIDGE) connectivity solutions. Comtech’s BRIDGE solutions provide portable, adaptable, full-service communications networks that can be established in a matter of hours and help “bridge the gap” for traditional satellite and terrestrial infrastructures.