-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueLearning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
The Designer of the Future
Our expert contributors peer into their crystal balls and offer their thoughts on the designers and design engineers of tomorrow, and what their jobs will look like.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Calculation of Frequency-Dependent Effective Roughness Dielectric Parameters for Copper Foil Using Equivalent Capacitance Models
January 2, 2019 | Marina Y. Koledintseva, Metamagnetics Inc.*, and Tracey Vincent, CST of AmericaEstimated reading time: 20 minutes
Applying the same image processing technique as for the roughness magnitude extraction, but performing summation for each column of pixels, one can get the volume concentration of metallic inclusions in the transition between pure dielectric to pure metal. Figure 5 shows the function for different types of foils. It is seen that 0% concentration corresponds to dielectric matrix, while 100% to smooth copper. The transitions are comparatively smooth – the left-hand front corresponds to the foil side, and the right-hand side to the "oxide" side. The smoother the conductor side, the more abrupt the metallic concentration slope is.
Figure 5: Volume concentration of metallic inclusions in black oxide STD (a), VLP (b), and HVLP (c) foil on PPO blend substrate.
The profiles on the foil and oxide sides can be fitted using exponential or polynomial functions as is shown in Figures 6-8. For simplicity of calculating integrals analytically in (5), (6), and (12), the exponential approximation will be further used. Note that the parameter b herein is the same as K1 in (1). The approximation data for a number of studied samples of black-oxide foils on PPO Blend substrates are presented in Table 1. The parameter δrms herein is the root-mean-square error at the approximation.
Figure 6: Approximation of volume concentration of metallic inclusions as a function of D distance from the smooth conductor: "foil" side (a) and "oxide" side (b) on STD foil.
Figure 7: Approximation of volume concentration of metallic inclusions as a function of distance from the smooth conductor: “foil” side (a) and “oxide” side (b) on VLP foil.
Figure 8: Approximation of volume concentration of metallic inclusions as a function of distance from the smooth conductor: “foil” side (a) and “oxide” side (b) on HVLP foil.
Table 1: Exponential approximation of profile functions on “foil” and “oxide” sides of copper foils.
Calculation of ERD Parameters Using the Proposed Analytical Model
The proposed equivalent capacitance model was applied to calculate the ERD parameters of the three types of foils as in Table 1. Figures 9-11 show the calculated frequency dependences for DKr and DFr of the corresponding ERD layers. The thicknesses of the layers are also determined from the metallic concentration profiles. Note that in the previous publications [4], [6], [13], [14], the ERD parameters were independent of frequency. However, the new analytical model shows that there is frequency dependence. The ERD parameters for the STD foil on its “foil” and “oxide” sides differ significantly because the “foil” side is much rougher than the “oxide” side. The corresponding differences for the sides on the VLP and HVLP foils do not differ that much, though they are not equal. Though the extracted ERD parameters for the VLP foil herein are close to those of the HVLP, the thicknesses of the layers to be modeled differ: the HVLP layers are thinner than VLP. Note that the calculated ERD results are not the same as reported in [10], because the test samples studied herein are different from those in [13].
In the present study, the roughness parameters of HVLP and VLP samples are not much different, while in [13] the VLP and HVLP foils are quite distinct.
Figure 9: Effective roughness dielectric parameters as functions of frequency for STD foil: DKr (a) and DFr (b).
Figure 10: Effective roughness dielectric parameters as functions of frequency for VLP foil: DKr (a) and DFr (b).
Figure 11: Effective roughness dielectric parameters as functions of frequency for HVLP foil: DKr (a) and DFr (b).
Numerical Simulations Based on Analytically Calculated ERD
The measured insertion loss |S21|, dB and time delay t on a transmission line, i.e., a single-ended stripline, increase as conductor roughness magnitude increases, and hence, the values DKr and DFr of the corresponding ERD layers increase. This is illustrated by Figure 12.
Figure 12: Insertion loss (a) and time delay (b) on 16-inch stripline with PPO blend dielectric and different foil types.
Page 3 of 4
Suggested Items
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.
The Chemical Connection: Surface Finishes for PCBs
03/31/2025 | Don Ball -- Column: The Chemical ConnectionWriting about surface finishes brings a feeling of nostalgia. You see, one of my first jobs in the industry was providing technical support for surface cleaning processes and finishes to enhance dry film adhesion to copper surfaces. I’d like to take this opportunity to revisit the basics, indulge in my nostalgia, and perhaps provide some insight into why we do things the way we do them in the here and now.
NUS Physicists Discover a Copper-free High-temperature Superconducting Oxide
03/28/2025 | PRNewswireProfessor Ariando and Dr Stephen Lin Er Chow from the National University of Singapore (NUS) Department of Physics have designed and synthesised a groundbreaking new material—a copper-free superconducting oxide—capable of superconducting at approximately 40 Kelvin (K), or about minus 233 degrees Celsius (deg C), under ambient pressure.
AT&S Sets New Standards in the Recycling of Copper and Chemicals
03/25/2025 | AT&SAT&S has been working for years to reduce the ecological footprint of its production sites worldwide with a comprehensive sustainability strategy and considerable investments.
Empowering the Future of Advanced Computing and Connectivity: DuPont Unveils Innovative Advanced Circuit Materials in Shanghai
03/24/2025 | DuPontDuPont will showcase how we are shaping the next generation of electronics at the International Electronic Circuits (Shanghai) Exhibition 2025.