-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueSignal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
Showing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Calculation of Frequency-Dependent Effective Roughness Dielectric Parameters for Copper Foil Using Equivalent Capacitance Models
January 2, 2019 | Marina Y. Koledintseva, Metamagnetics Inc.*, and Tracey Vincent, CST of AmericaEstimated reading time: 20 minutes
Applying the same image processing technique as for the roughness magnitude extraction, but performing summation for each column of pixels, one can get the volume concentration of metallic inclusions in the transition between pure dielectric to pure metal. Figure 5 shows the function for different types of foils. It is seen that 0% concentration corresponds to dielectric matrix, while 100% to smooth copper. The transitions are comparatively smooth – the left-hand front corresponds to the foil side, and the right-hand side to the "oxide" side. The smoother the conductor side, the more abrupt the metallic concentration slope is.
Figure 5: Volume concentration of metallic inclusions in black oxide STD (a), VLP (b), and HVLP (c) foil on PPO blend substrate.
The profiles on the foil and oxide sides can be fitted using exponential or polynomial functions as is shown in Figures 6-8. For simplicity of calculating integrals analytically in (5), (6), and (12), the exponential approximation will be further used. Note that the parameter b herein is the same as K1 in (1). The approximation data for a number of studied samples of black-oxide foils on PPO Blend substrates are presented in Table 1. The parameter δrms herein is the root-mean-square error at the approximation.
Figure 6: Approximation of volume concentration of metallic inclusions as a function of D distance from the smooth conductor: "foil" side (a) and "oxide" side (b) on STD foil.
Figure 7: Approximation of volume concentration of metallic inclusions as a function of distance from the smooth conductor: “foil” side (a) and “oxide” side (b) on VLP foil.
Figure 8: Approximation of volume concentration of metallic inclusions as a function of distance from the smooth conductor: “foil” side (a) and “oxide” side (b) on HVLP foil.
Table 1: Exponential approximation of profile functions on “foil” and “oxide” sides of copper foils.
Calculation of ERD Parameters Using the Proposed Analytical Model
The proposed equivalent capacitance model was applied to calculate the ERD parameters of the three types of foils as in Table 1. Figures 9-11 show the calculated frequency dependences for DKr and DFr of the corresponding ERD layers. The thicknesses of the layers are also determined from the metallic concentration profiles. Note that in the previous publications [4], [6], [13], [14], the ERD parameters were independent of frequency. However, the new analytical model shows that there is frequency dependence. The ERD parameters for the STD foil on its “foil” and “oxide” sides differ significantly because the “foil” side is much rougher than the “oxide” side. The corresponding differences for the sides on the VLP and HVLP foils do not differ that much, though they are not equal. Though the extracted ERD parameters for the VLP foil herein are close to those of the HVLP, the thicknesses of the layers to be modeled differ: the HVLP layers are thinner than VLP. Note that the calculated ERD results are not the same as reported in [10], because the test samples studied herein are different from those in [13].
In the present study, the roughness parameters of HVLP and VLP samples are not much different, while in [13] the VLP and HVLP foils are quite distinct.
Figure 9: Effective roughness dielectric parameters as functions of frequency for STD foil: DKr (a) and DFr (b).
Figure 10: Effective roughness dielectric parameters as functions of frequency for VLP foil: DKr (a) and DFr (b).
Figure 11: Effective roughness dielectric parameters as functions of frequency for HVLP foil: DKr (a) and DFr (b).
Numerical Simulations Based on Analytically Calculated ERD
The measured insertion loss |S21|, dB and time delay t on a transmission line, i.e., a single-ended stripline, increase as conductor roughness magnitude increases, and hence, the values DKr and DFr of the corresponding ERD layers increase. This is illustrated by Figure 12.
Figure 12: Insertion loss (a) and time delay (b) on 16-inch stripline with PPO blend dielectric and different foil types.
Page 3 of 4
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.