-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
A Fractal Conversation with Jim Howard and Greg Lucas
January 15, 2019 | Barry Matties and Andy Shaughnessy, I-Connect007Estimated reading time: 3 minutes
Veteran PCB technologists Jim Howard and Greg Lucas have made an interesting discovery: Certain shapes of copper planes make a PCB run more efficiently than other shapes, a process they dubbed fractal design. It doesn’t appear to cost a penny more, and testing suggests that fractal design techniques could eliminate edge noise.
Barry Matties and Andy Shaughnessy asked Jim and Greg to discuss the fractal design process, as well as some of the advantages of using this technique on your next PCB design.
Barry Matties: Gentlemen, tell us how you all got started with fractals and fractal design.
Jim Howard: Greg and I were in the midst of developing a technology known as buried capacitance, and we had a number of tests that we needed to run on PCBs to determine exactly what the effects of having this very thin distributed capacitance within the board would accomplish. We discovered some effects that really didn't gel with what we were doing at that time, but they were of interest.
A few years later, we went back and thought, "These things could be useful," because we discovered that certain shapes on the copper planes of the PCBs—which, at that time, were only dictated by anti-pads and various cuts and things in the copper—either increased or decreased its ability to operate efficiently as a power/ground plane. We didn't know precisely what that effect was.
Then, I spent a few years working for a Chinese company developing some technology for them, and they wanted to see if this was something that I could work on in the future. I found we could create an effect with a specific shape of putting anti-pads, cuts, and other things where we wanted to, but the problem was that no designer was ever going to let you do that. That's an impossible scenario.
So, I discarded that for a moment, and after I left that company as their technical director, I started to think about this particular problem again. I thought, "What related fields can I get information from?" because as an engineer, I can never be too proud to beg. I started investigating unusual bits of science, came across fractals, and immediately recognized the fractals exemplified the patterns we had been creating in their simplest form. The thing I was looking at, at the time, was a Cantor set, which is one of the very early fractal forms.
I researched that, talked to Greg about it, and he thought about it for a while. Then, we realized, "Hey, there's a reason to pursue this." We initially pursued it from the point of view of something very simple that we could initially find a reason for: If we could etch this around the outside of a PCB, perhaps we could reduce the noise given off by the edges of the board. Edge noise was a significant issue with buried capacitance. We started working with it and developing some IP to give us a history in the field, and also to serve as a vehicle for further study.
Next, we created some samples. We went through testing in Silicon Valley at Dr. Earl McCune's laboratory. We did a lot of analysis with Dr. McCune. From that, we derived and sent the samples that gave us the very most interesting results to an FCC testing laboratory with a set of engineers at that end to help us interpret the responses. The responses were as we expected in terms of reducing the noise from the PCB for virtually no cost or no cost that we could think of.
To read this entire interview, which appeared in the December 2018 issue of Design007 Magazine, click here.
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.