-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Mikrotron Cameras Accelerate Cell Analysis from Days to Minutes
November 21, 2019 | MikotronEstimated reading time: 3 minutes
Scientists at the Dresden University of Technology in Dresden, Germany have developed an analytical procedure that allows the mechanical properties of 100,000 cells to be assessed in less than two minutes, or 10,000 times faster than conventional methods. Using advanced camera technology from Mikrotron, the research team was able to reach unprecedented cell analysis speeds.
First, to understand cell analysis, consider a piece of fruit. How does one know that a fruit, say an avocado is ripe and ready to eat? Simply by squeezing it in order to check its firmness. The softer the fruit is, the higher is the degree of ripeness. This same principle can be applied in a laboratory, since biological cells behave in a much similar way. Their mechanical properties allow various conclusions to be drawn. Certain white blood cells, for instance, are softer during the starting period of an infection. Also, many types of cancer cells can be deformed more easily than healthy cells and the status of the cell cycle can be determined based on how firm a cell is.
Using conventional technologies for cell analysis has been slow with a maximum of 100 cells being sampled per hour. To provide perspective, one single drop of blood contains roughly 10,000 white blood cells. Consequently, measurements had to be performed around the clock in order to analyze a meaningful quantity. Obviously, this form of analysis is simply too slow for routine, efficient applications in the laboratory.
The Principle of Real-Time Deformability Cytometry
At the Dresden University of Technology, the scientists have developed a method that speeds up this assessment process by a factor of 10,000 using Real-Time Deformability Cytometry (RT-DC). They've coined the phrase AcCellerator for the new system and started a new company, Zellmechanik Dresden to further push the limits of cell analysis.
During the process a stream of deformed cells flows into the setup at a speed of 10 cm/s and passes the field of view of a microscope with 400-x magnification. In principle, the system permits any inverse microscope to be connected; however, it is most frequently used with an AxioObserver from Zeiss. An EoSens® CL high-speed camera from Mikrotron is connected to the microscope and captures each individual cell, with up to 4,000 frames per second. The camera also controls the 1 μs short LED light impulse sent out for each image acquisition. The standard resolution of 250 x 80 pixels is automatically adjusted to the channel width. All images are transferred in real time to the computer unit via a Camera Link® interface. A specifically designed program based on National Instruments LabVIEW then analyzes the deformation of each particular cell. Analyzing a single image takes less than 250 μs.
"This process enables us to measure the mechanical properties of several hundred cells per second. In one minute, this permits us to carry out analysis that would take a week in the technologies we used before," says Dr. Oliver Otto, CEO of Zellmechanik Dresden. Within just 15 minutes, a precise characterization of all blood cell types, including cell activation status, is analyzed. Due to the high throughput of cells, only one single drop of blood is needed for the analysis."
Integration of the High-Speed Camera
The AcCellerator achieves its amazing measuring speed thanks to the combination of Mikrotron high-speed camera technology and high processing power. Several reasons led the scientists to opt for the EoSens CL.
"The Mikrotron camera is both a great value and easy to operate," explains Dr. Daniel Klaue, Dr. Otto's counterpart in the management team at Zellmechanik Dresden. "It was also important to the team of developers that the camera could be controlled with LabVIEW and that it had open interfaces. The integration into the system was simple and uncomplicated. Superior imaging quality was complimented by exemplary customer support by Mikrotron."
Further Application Fields
Thanks to the AcCellerator, cell mechanic evaluation for the first time has become usable in clinical applications. In the future, mechanical fingerprinting of cells could be used for fast diagnosis as well as for monitoring infections. Blood count changes or metastasizing cells can be detected in a matter of minutes. The technology is also opening up many new areas of application in research by enabling scientists to examine all processes in which cytoskeleton changes are responsible for the mechanical stabilization of the cell, including migration or cell division.
For more information, visit www.mikrotron.de/en. In the United States, call 1 858-774-1176.
Suggested Items
Designing for Cost to Manufacture
11/21/2024 | Marcy LaRont, I-Connect007ICAPE's Richard Koensgen, a seasoned field application engineer with a rich background in PCB technology, shares his journey of working with customers and manufacturers through the intricacies of circuit board development and emphasizes the importance of early-stage collaboration with PCB designers. With a focus on tackling the most challenging aspects of PCB design and manufacturing, he discusses everything from layout considerations to the thermal challenges of today's technology when it comes to designing for cost.
OSI Systems Receives $11M Order for Electronic Assemblies
11/21/2024 | BUSINESS WIREOSI Systems, Inc announced that its Optoelectronics and Manufacturing division has received an order for approximately $11 million to provide critical electronic sub-assemblies for a leading-edge healthcare original equipment manufacturer (OEM), known for innovative and specialized medical solutions.
CHIPS for America Announces Up to $300M in Funding to Boost U.S. Semiconductor Packaging
11/21/2024 | U.S. Chamber of CommerceThe Biden-Harris Administration announced that the U.S. Department of Commerce (DOC) is entering negotiations to invest up to $300 million in advanced packaging research projects in Georgia, California, and Arizona to accelerate the development of cutting-edge technologies essential to the semiconductor industry.
NTT, Olympus Joint Demonstration Shows IOWN APN's Low-latency Capability
11/21/2024 | JCN NewswireNTT Corporation and Olympus Corporation announced that, following the start of their joint experiment in March of the world’s first cloud endoscope system which processes endoscopic videos on the cloud, they jointly established a cloud endoscopy system utilizing the IOWN APN technology.
Hon Hai Joins OpenUSD Alliance to Promote Standardized and Open Source Universal Scenario Description (USD) Technology
11/21/2024 | Hon Hai Technology GroupHon Hai Technology Group , the world’s largest technology manufacturing and service provider, announced that it has joined the Alliance for OpenUSD (AOUSD ) to support the construction of a 3D ecosystem and promote Cooperation among various industries around the world promotes the standardization of Universal Scene Description (USD ).