-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueShowing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
All About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
AltiumLive Frankfurt 2019: Rick Hartley Keynote
November 25, 2019 | Pete Starkey, I-Connect007Estimated reading time: 8 minutes
Tight coupling did create different line widths: the advantage with tight coupling was that it gave a narrower line for a given impedance, which made the design easier to route. The disadvantage with tight coupling was that it gave a narrower line for a given impedance, which made the design more difficult to manufacture and hence more expensive. And there were signal integrity issues associated with skin effect; sometimes, separating differential lines by greater distances and making the lines wider could be justified for reasons of signal integrity and/or cost of manufacturing.
Hartley discussed crosstalk between tightly-coupled lines sandwiched between planes, where interference from the outside world was reduced because high-frequency fields would not conduct through copper planes. But the close proximity of an aggressive signal on the same layer would result in unbalanced crosstalk, however tightly the differential pair were coupled.
Hartley also made some interesting comments about skew, which, in his opinion, was not nearly as critical as stated in the application notes. He went on to say that he never length-matched the two lines of a differential pair, even at 10-gigahertz frequencies; instead, he ran them side by side, made them approximately the same length, and they had always worked. It was much more important to reference ground on the next layer of the board.
What else could impact timing skew? Board materials. As signals travelled through the dielectric of the composite material, and the dielectric constants of epoxy and glass were different, they travelled at different speeds as they crossed the weave of the glass cloth, and the two lines of the differential pair were always effectively jockeying for position. Hartley named glass styles 1080 and 106 as the worst for this effect because of the width of spaces in the weave could result in 5 mm of skew in 75 mm of routing in a typical example, putting a different perspective on the concept of length matching and causing real signal integrity problems in high-speed designs. The message was to choose one of the newer spread-glass styles designed to minimise this effect, although there could still be some electromagnetic interference issues.
Hartley stressed that one of the biggest causes of electromagnetic interference was changing layers, and he showed an example of a signal line on layer 1 of a circuit board traversing a ground-plane on layer 2 through a via to a signal layer 3. The energy in that circuit was in the dielectric space between layer 1 and the ground-plane layer 2. If it was necessary to change layers in order to change routing direction from X to Y, then the fields would couple through the clearance hole in the plane, the fields would continue on in the dielectric space between layers 2 and 3, and everything would work perfectly with no danger of spreading fields and no electromagnetic interference problems. And for the most part, signal integrity would be maintained.
But if the fields spread out and there were other vias in that region, they would couple into those other vias, and there was a strong possibility of introducing electromagnetic interference. And if it was necessary to go from one ground plane to another, the best way to do it was to place a ground via next to it. Hartley discussed various field-spreading and coupling effects and their consequences and commented that he spent most of his consulting time solving electromagnetic interference problems, admitting that his job was so easy because the majority could be resolved simply by adding return vias or changing positions of decoupling capacitors.
People wouldn’t need to hire Hartley if they would take the trouble to gain some basic knowledge “There is no current inside of a via,” was another forthright statement. The beauty of the fields was that the return current was on the outside of the via barrel. Therefore, contrary to popular opinion, there was no justification to fill the via with conductive material; “You could use peanut butter; it doesn’t matter electrically.”
What about differential pairs? Was a return via necessary when transitioning layers? A lot of people believed not. But Hartley depicted them as two single-ended signals, referencing the plane above or below, rather than them having magical, mystical properties because they were a differential pair. Without a return via, their fields would spread in exactly the same way as a single-ended signal, and create a common-mode current in one or the other line. He illustrated the best way to change layers with a differential pair using a pair of vias, or even a single via: “But you have to take the fields through the dielectric from one dielectric layer to the next. You can’t just ignore the fields because when you do, you set yourself up for problems.”
Rick Hartley’s keynote set people thinking. He had blown away a lot of popular mythology and could support his statements and design principles with factual examples drawn from many years of practical experience. The Q&A session ran for some time.
Page 2 of 2Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Trump Copper Tariffs Spark Concern
07/10/2025 | I-Connect007 Editorial TeamPresident Donald Trump stated on July 8 that he plans to impose a 50% tariff on copper imports, sparking concern in a global industry whose output is critical to electric vehicles, military hardware, semiconductors, and a wide range of consumer goods. According to Yahoo Finance, copper futures climbed over 2% following tariff confirmation.
Happy’s Tech Talk #40: Factors in PTH Reliability—Hole Voids
07/09/2025 | Happy Holden -- Column: Happy’s Tech TalkWhen we consider via reliability, the major contributing factors are typically processing deviations. These can be subtle and not always visible. One particularly insightful column was by Mike Carano, “Causes of Plating Voids, Pre-electroless Copper,” where he outlined some of the possible causes of hole defects for both plated through-hole (PTH) and blind vias.
Trouble in Your Tank: Can You Drill the Perfect Hole?
07/07/2025 | Michael Carano -- Column: Trouble in Your TankIn the movie “Friday Night Lights,” the head football coach (played by Billy Bob Thornton) addresses his high school football team on a hot day in August in West Texas. He asks his players one question: “Can you be perfect?” That is an interesting question, in football and the printed circuit board fabrication world, where being perfect is somewhat elusive. When it comes to mechanical drilling and via formation, can you drill the perfect hole time after time?