-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInner Layer Precision & Yields
In this issue, we examine the critical nature of building precisions into your inner layers and assessing their pass/fail status as early as possible. Whether it’s using automation to cut down on handling issues, identifying defects earlier, or replacing an old line...
Engineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Estimated reading time: 1 minute
The Plating Forum: New Developments in ENIG
Electroless nickel immersion gold (ENIG) has been around the printed circuit industry for more than 25 years. The first version of the IPC-4552 ENIG specification was issued in 2002. Initially, the specification only addressed tin/lead solder; now, lead-free solder, like SAC 305 and its variants, dominate soldering in electronics. Although the occurrence of corrosion was recognized, a better understanding of the defect has led to a series of improvements over time.
Today, it is well established that Ni corrosion occurs in the immersion gold step, and the most important method for eliminating the defect is through process control. ENIG is a complex chemical process with multiple process steps, and each step must be completed successfully before proceeding forward. ENIG remains a very popular surface finish and offers a series of benefits at assembly: it is easy to inspect, has an extended shelf life, and is suitable for a wide range of assembly applications.
The IPC-4552 Rev A, issued in 2017, specifies the deposit thickness: nickel from 3–6 µm (120–240 µnis) and gold from 0.04–0.1 µm (1.6–4.0 µins). The upper limit for gold at 0.1 µm (4.0 µins) would require an extended dwell time in the immersion gold bath. The extended dwell time makes the deposit susceptible to nickel corrosion. The recommended immersion gold deposit thickness is 0.04–0.07 µm (1.6–2.8 µins). If a higher gold thickness is a design requirement, an alternative to immersion gold should be used for deposition. Two available alternatives are reduction-assisted immersion (RAI) gold and electroless gold.
To read this entire column, which appeared in the December 2019 issue of PCB007 Magazine, click here.
More Columns from The Plating Forum
The Plating Forum: Reduction Assisted Immersion Gold for ENEPIG Surface FinishThe Plating Forum: Surface Finish Evolution from Conventional to Advanced
The Plating Forum: Plating in Electronic Applications
The Plating Forum: How the Pandemic Impacted PCB Manufacturing
The Plating Forum: The Significance of IPC ENIG Specification 4552 Revision B
The Plating Forum: The IPC Surface Finish Specifications
The Plating Forum: An Overview of Surface Finishes
The Plating Forum: DIG—The Next Generation